【线性结构上的动态规划】UVa 11400 - Lighting System Design

Problem F
Lighting System
Design

Input: Standard
Input

Output: Standard
Output

You are given the task to design
a lighting system for a huge conference hall. After doing a lot of calculation
& sketching, you have figured out the requirements for an energy-efficient
design that can properly illuminate the entire hall. According to your design,
you need lamps of n different power
ratings. For some strange current regulation method, all the lamps need to be
fed with the same amount of current. So, each category of lamp has a
corresponding voltage rating. Now, you know the number of lamps & cost of
every single unit of lamp for each category. But the problem is, you are to buy equivalent voltage sources for all the lamp
categories. You can buy a single voltage source for each category (Each source
is capable of supplying to infinite number of lamps of its voltage rating.)
& complete the design. But the accounts section of your company soon
figures out that they might be able to reduce the total system cost by eliminating
some of the voltage sources & replacing the lamps of that category with
higher rating lamps. Certainly you can never replace a lamp by a lower rating
lamp as some portion of the hall might not be illuminated then. You are more
concerned about money-saving than energy-saving. Find the minimum possible cost
to design the system.

Input

 

Each case in the input begins
with n (1<=n<=1000), denoting the number
of categories. Each of the following n lines describes a category. A category
is described by 4 integers - V (1<=V<=132000), the voltage rating,
K (1<=K<=1000), the cost of a voltage source of this rating, C
(1<=C<=10), the cost of a lamp of this rating & L (1<=L<=100),
the number of lamps required in this category. The input terminates with a test case where n = 0. This case should not be
processed.

Output

 

For each test case, print the minimum possible cost to
design the system.

Sample Input                                                  Output
for Sample Input

3

100 500 10 20

120 600 8 16

220 400 7 18

0

读题时题意理解的不太好,看分析后才明白。给出n种电灯泡,含四种属性(V-电压,K-电源费用,C-每个灯泡费用,L-所需灯泡数量);输出最合理的照明系统设计方案,要求花费最少的钱。

自己没考虑到的是:每种电压的灯泡要么全换,要么不换。因为如果只将部分灯泡换成另一种灯泡,则需要买两种不同电压的电源。这样不划算。而且,电压高的灯泡,因电流大小相等,故功率也大,这样会节省更多的钱。

代码很简单:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstdlib>
 4 #include<cstring>
 5 #include<algorithm>
 6 using namespace std;
 7 const int maxn = 1005;
 8 struct Lamp
 9 {
10     int V, K, C, L;
11     bool operator < (const Lamp& a) const
12     {
13         return V < a.V;
14     }
15 }lamp[maxn];
16 int dp[maxn], sum[maxn];
17 int main()
18 {
19     int n;
20     while(~scanf("%d", &n) && n)
21     {
22         for(int i = 1; i <= n; i++)
23         {
24             scanf("%d%d%d%d", &lamp[i].V, &lamp[i].K, &lamp[i].C, &lamp[i].L);
25         }
26         sort(lamp+1, lamp+1+n);
27         memset(sum, 0, sizeof(sum));
28         memset(dp, 0, sizeof(dp));
29         sum[0] = 0;
30         for(int i = 1; i <= n; i++)
31         {
32             sum[i] = sum[i-1]+lamp[i].L;
33             if(i == 1) dp[i] = lamp[i].C*sum[i]+lamp[i].K;
34             else
35             for(int j = 0; j < i; j++)
36             {
37                 if(dp[i] == 0) dp[i] = dp[j]+lamp[i].C*(sum[i]-sum[j])+lamp[i].K;
38                 else dp[i] = min(dp[j]+lamp[i].C*(sum[i]-sum[j])+lamp[i].K, dp[i]);
39             }
40         }
41         printf("%d\n", dp[n]);
42     }
43     return 0;
44 }
时间: 2024-12-25 21:41:22

【线性结构上的动态规划】UVa 11400 - Lighting System Design的相关文章

uva 11400 - Lighting System Design(动态规划 最长上升子序列问题变型)

本题难处好像是在于 可以把一些灯泡换成电压更高的灯泡以节省电源的钱 ,所以也才有了对最优方案的探求 好的处理方法是按照电压从小到大排序,只能让前面的换成后面的,也就满足了把一些灯泡换成电压更高的灯泡 的要求: 一种电压的灯泡,要么不换,要换则应该全换:换,说明用当前的电源不值:而既然不值则应该全部换掉以避免使用当前电源,不然即增加了灯泡费用又没节省电源费用,亏大了... 状态转移详见代码 #include<cstdio> #include<cstring> #include<

UVa 11400 Lighting System Design(DP 照明系统设计)

题意  设计某个地方的照明系统  一共需要n种不同类型的灯泡  接着输入 每种灯泡的电压v  对应电压电源的价格k  每个灯泡的价格c   需要这种灯泡的数量l   电压低的灯泡可以用电压高的灯泡替换   每种灯泡只需要一个对应的电源   求完成这个照明系统的最少花费 比较简单的DP  容易知道 当要替换一种灯泡中的一个到令一种电压较高的灯泡时  只有全部替换这种灯泡为另一种时才可能使总花费变小   全部替换掉就省下了这种灯泡的电源花费   先把灯泡按照电压排序   那么每种灯泡都可以替换他前面

UVa 11400 Lighting System Design(DP 照明设计)

意甲冠军  地方照明系统设计  总共需要n不同类型的灯泡  然后进入 每个灯电压v  相应电压电源的价格k  每一个灯泡的价格c   须要这样的灯泡的数量l   电压低的灯泡能够用电压高的灯泡替换   每种灯泡仅仅须要一个相应的电源   求完毕这个照明系统的最少花费 比較简单的DP  easy知道 当要替换一种灯泡中的一个到令一种电压较高的灯泡时  仅仅有所有替换这样的灯泡为还有一种时才可能使总花费变小   所有替换掉就省下了这样的灯泡的电源花费   先把灯泡依照电压排序   那么每种灯泡都能够

UVA 11400 Lighting System Design DP

最优情况不可能跨过一种灯泡,为什么? 因为如果A换成C是划算的那么如果A换成B是不划算的那么可以将A和B都换成C,肯定是划算的= = 然后就是简单DP了. #include <cstdio> #include <cstring> #include <iostream> #include <map> #include <set> #include <vector> #include <string> #include <

UVa 11400 Lighting System Design

题意: 一共有n种灯泡,不同种类的灯泡必须用不同种电源,但同一种灯泡可以用同一种电源.每种灯泡有四个参数: 电压值V.电源费用K.每个灯泡的费用C.所需该种灯泡的数量L 为了省钱,可以用电压高的灯泡来代替电压低的灯泡.输出最小费用. 分析: 每种电源的灯泡要么不换要么全换,因为只换部分的话,两种类型的电源都要买,不划算. 将电压从小到大排序,s[i]表示前i种灯泡一共需要多少个灯泡,d[i]表示前i种灯泡最少费用. d[i] = min{d[j] + (s[i] - s[j]) * c[i] +

UVA 11400 Lighting System Design 照明系统设计

首先是一个贪心,一种灯泡要么全都换,要么全都不换. 先排序,定义状态d[i]为前面i种灯泡的最小花费,状态转移就是从d[j],j<i,加上 i前面的j+1到i-1种灯泡换成i的花费. 下标排序玩脱了... #include<bits/stdc++.h> using namespace std; const int maxn = 1e3+3; int V[maxn], K[maxn], C[maxn], L[maxn]; int d[maxn],r[maxn],s[maxn]; bool

UVA 14000 Lighting System Design(DP)

You are given the task to design a lighting system for a huge conference hall. After doing a lot of calculation & sketching, you have figured out the requirements for an energy-efficient design that can properly illuminate the entire hall. According

线性结构上的动态规划

UVA11400 分析:首先我们需要明白一个问题,就是每种电压的灯泡要么就是全部替换,要么全部不替换,为什么呢?因为如果只替换一半,那两种电源都需要,不划算,从另一个方面来说,既然转化一半会比原来小,那为什么不全部转换呢?接着根据题意我们应该把灯泡按照电压从小到大排序.然后我们令dp[i]表示1-i的最小开销,令sum[i]表示前i种灯泡的数量,则dp[i]=min(dp[j]+(sum[i]-sum[j])*p[i].c+p[i].k),表示前j个先用最优方案,然后j+1-i换成第i号电源.有

DP入门(4)——线性结构上的动态规划

一.最长上升子序列(LIS) 给定n个整数A1,A2,-,An,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变).例如序列1,6,2,3,7,5,可以选出上升子序列1,2,3,5,也可以选出1,6,7,但前者更长.选出的上升子序列中相邻元素不能相等. 分析:设d(i)为以i结尾的最长上升子序列的长度,则d(i)= max{0,d(j)|j<i,Aj<Ai}+1,最终答案是max{d(i)}.如果LIS中的相邻元素可以相等,把<改