树结构索引

总概:ISAM树是一个静态索引结构,它在文件不频繁修改的情况下非常有效,但它不适合频繁增长和缩小的数据文件。B+树是一个能适应文件变化的动态结构,它是应用最广泛的索引结构,因为能有效的适应变化,支持等值搜索和范围查询。在ISAM和B+树结构中,叶子叶包含数据项,为了方便起见,将拥有搜索码到值K的数据项表示为k*,非叶子页包含索引项,其形式<搜索码值,页标识符>它用于直接搜索需要的数据项(存储在叶子页中)

1.索引顺序存取方法(ISAM)

时间: 2024-10-12 18:13:26

树结构索引的相关文章

SQL Server中的索引结构与疑惑

说实话我从没有在实际项目中使用过索引,仅知道索引是一个相当重要的技术点,因此我也看了不少文章知道了索引的区别.分类.优缺点以及如何使用索引.但关于索引它最本质的是什么笔者一直没明白,本文是笔者带着这些问题研究msdn的一点小结以及一大堆疑惑. 1.表结构 当开发者在数据库中创建一个表时,此时默认为这个表创建了一个分区,注意是一个分区.分区是一种数据组织单元,在这个分区中可存在2种结构,分别是堆结构或B树结构(索引结构),也就是说一个分区里要么是堆结构要么是B树结构.为了在某些方面提高性能以及便于

数据库索引B+树

面试时无意间被问到了这个问题:数据库索引的存储结构一般是B+树,为什么不适用红黑树等普通的二叉树? 经过和同学的讨论,得到如下几个情况: 1. 数据库文件是放在硬盘上,每次读取数据库都需要在磁盘上搜索,因此需要考虑磁盘寻道时间,我们都知道磁盘寻道开销是非常大的.同时,索引一般也是非常大的,内存不能放下,因此也会放在磁盘上.(另外,还与局部性原理与磁盘预读有关系). 2. B+树所有的关键字都出现在叶子节点的链表(稠密索引)中,且链表中的关键字是有序的.非叶子节点只起索引作用(稀疏索引). 叶子节

T-SQL查询——深入理解索引,原理(B树)

在SQL Server中,索引是一种增强式的存在,这意味着,即使没有索引,SQL Server仍然可以实现应有的功能.但索引可以在大多数情况下大大提升查询性能高.在OLAP中尤其明显,要完全理解索引的概念,需要了解大量原理性的知识,包括B树,堆,数据库页,区,填充因子,碎片,文件组等等一系列相关知识. 索引时对数据库中表中一列和多列的值进行排序的一种结构,使用索引可以快速访问数据表中特定的信息. 精简来说,索引时一种结构,在SQL Server中,索引和表(这里值得是加了聚集索引的表)的存储结构

MySQL中索引和优化的用法总结

1.什么是数据库中的索引?索引有什么作用? 引入索引的目的是为了加快查询速度.如果数据量很大,大的查询要从硬盘加载数据到内存当中. 2.InnoDB中的索引原理是怎么样的? InnoDB是Mysql的默认存储引擎,InnoDB有两种索引:B+树索引和哈希索引,其中哈希索引是自适应性的,存储引擎会根据表的使用情况,自动创建哈希索引,不能人为的干涉. B树.B-树.B+树.B*树四种数据结构在索引中的运用,这四种数据结构的顺序必须是这样的.分别阐述如下: B树:二叉树,每个结点只存储一个关键字,等于

B树、B-树、B+树、B*树介绍,和B+树更适合做文件索引的原因

今天看数据库,书中提到:由于索引是采用 B 树结构存储的,所以对应的索引项并不会被删除,经过一段时间的增删改操作后,数据库中就会出现大量的存储碎片, 这和磁盘碎片.内存碎片产生原理是类似的,这些存储碎片不仅占用了存储空间,而且降低了数据库运行的速度.如果发现索引中存在过多的存储碎片的话就要进行 “碎片整理”了,最方便的“碎片整理” 手段就是重建索引, 重建索引会将先前创建的索引删除然后重新创建索引,主流数据库管理系统都提供了重建索引的功能,比如 REINDEX.REBUILD 等,如果使用的数据

B树、B-树、B+树、B*树

B树.B-树.B+树.B*树 B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入 右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差

【转】B树、B-树、B+树、B*树、红黑树、 二叉排序树、trie树Double Array 字典查找树简介

B  树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性

B 树、B- 树、B+ 树和B* 树

B树 即二叉搜索树:1. 所有非叶子结点至多拥有两个儿子(Left和Right):2. 所有结点存储一个关键字:3. 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树:如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字:如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二

数据结构B树

B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入 右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树 的搜索