Lattice

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4063&rep=rep1&type=pdf

https://www2.informatik.uni-erlangen.de/EN/teaching/thesis/download/i2B00401.pdf

http://mathworld.wolfram.com/Lattice-OrderedSet.html

https://en.wikibooks.org/wiki/ROSE_Compiler_Framework/Lattice

http://www.playingwithpointers.com/speculative-dfa.html

https://books.google.com.vn/books?id=nMZnyp_zW8AC&pg=PA606&lpg=PA606&dq=Lattice+(order)+jit+compiler&source=bl&ots=KaWl3v216o&sig=uDcYyC5qYwzjD1PE-JiZ2iOJfag&hl=zh-CN&sa=X&ved=0ahUKEwjG-a2-vubSAhWKTLwKHf80B_gQ6AEIQDAF#v=onepage&q=Lattice%20(order)%20jit%20compiler&f=false

http://www.cs.cmu.edu/afs/cs/academic/class/15745-s06/web/handouts/05.pdf

http://www.itu.dk/people/brabrand/static.pdf

http://stackoverflow.com/questions/2625261/how-is-a-lattice-used-by-a-compiler

https://en.wikipedia.org/wiki/Lattice_(order)

时间: 2024-12-15 05:35:12

Lattice的相关文章

棋盘的多米诺覆盖:Dimer Lattice Model,Pfaff 多项式,Kasteleyn 定理

这次来介绍计数组合学里面一个经典的问题:Dimer Lattice Model.问题是这样的:一个有 64 个方格的国际象棋棋盘,有多少种不同的多米诺骨牌覆盖?这里的覆盖是指不重复不遗漏地盖住整个棋盘. 下图是一种可能的覆盖方式(图片来自 Wiki 百科): 这个问题的答案是 12988816,非常大的一个数字,绝对不是一个一个数出来的.1961 年德国物理学家 Kasteleyn 借助于线性代数中的一个结论首先解决了这个问题,我们接下来就介绍他的方法. ~~~~~~~~~~~~~~~~~~~~

diamond版本区别之管脚定义----lattice开发平台

对于多位宽的数据线,在diamond xxx之前,管脚绑定格式是(假如数据是input wire[1:0] din) LOCATE COMP "din_0" SITE "P16" ;LOCATE COMP "din_1" SITE "P15" ;/*******这种格式是不是很变态,和altera.xilinx都不一样,对于刚接触lattice开发平台的人来说绝对是一个坑*******/ diamond3.7,管脚绑定格式是

Visible Lattice Points(spoj7001+初探莫比乌斯)gcd(a,b,c)=1 经典

VLATTICE - Visible Lattice Points no tags Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point

数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: 3317 Description A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible fr

UVA - 11768 Lattice Point or Not (拓展gcd)

Now a days a very common problem is:"The coordinate of two points in Cartesian coordinate system is (200, 300) and(4000, 5000). If these two points are connected we get a line segment. How manylattice points are there on this line segment." You

POJ 3090 Visible Lattice Points 欧拉函数

链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,并且这些点与(0,0)的连点不经过其他的点. 思路:显而易见,x与y只有互质的情况下才会发生(0,0)与(x,y)交点不经过其他的点的情况,对于x,y等于N时,可以选择的点均为小于等于N并且与N互质的数,共Euler(N)个,并且不重叠.所以可以得到递推公式aa[i]=aa[i]+2*Euler(N). 代码: #include <iostream> #in

【DFS】【打表】Lattice Animals

[ZOJ2669]Lattice Animals Time Limit: 5 Seconds      Memory Limit: 32768 KB Lattice animal is a set of connected sites on a lattice. Lattice animals on a square lattice are especially popular subject of study and are also known as polyminoes. Polymino

A - Visible Lattice Points SPOJ - VLATTICE 容斥原理/莫比乌斯反演

Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y. Inpu

lattice 与 modelsim 仿真 笔记

对于 lattice  Diamond 与 modelsim 的联合仿真,我总结了一句话,那就是—— 难者不会,会者不难.  也许刚开始 觉得 摸不着 头脑,但是 一旦学会 感觉还是很简单和直观的. 直接进入正题, 仿真第一步 : 建立仿真库. 在正确安装了Diamond  和 modelsim  之后,就是先要建立自己的 lattice 仿真的库文件: 1.打开 modelsim 的 安装目录,在其目录下 打开 modelsim.ini 的属性,去除其只读性. 2.在modelsim 安装目录

lattice硬核之——SPI

官方提供的设计资源 1.SPI Controller - WISHBONE Compatible Device Support:  ispMACH 4000ZE, MachXO, LatticeXP2, MachXO2, MachXO3 Lattice Connectivity Reference Design 2.SPI Flash Controller with Wear Leveling Device Support:  MachXO2 Lattice Controller, Periph