『理论』科学计算专项_线性代数几何原理剖析

矩阵左乘向量的两种理解

1,矩阵左乘向量可以理解为对向量进行线性变换

探究原理的话,可以理解左乘为对整个空间(基&目标向量)进行线性变换,其中,

  • 变换矩阵是基‘在基的坐标的列向量组合
  • 目标向量是向量在基中的坐标
  • 结果向量是向量’在基下的坐标

就结果来看,实质是利用向量在基下的坐标和基‘在基下的坐标,求出整个空间旋转到基’位置后向量的新位置(向量‘)在原基下的坐标。

详细说明如下:

把基画出来的原因是因为矩阵变换的其实是基。

举例子来看看,比如旋转(旋转矩阵 ):

2.矩阵左乘向量可以理解为单纯的对向量进行换基操作

和上面不同的是这个理解中目标向量本身在绝对空间中没有发生任何变化,仅仅是换了对基:

  • 变换矩阵是基‘在基下的坐标的列向量组合
  • 目标向量是原向量在基’下的坐标
  • 结果向量是原向量在基下的坐标

就结果来看,实质上是利用向量在基‘下的坐标和基’在基下的坐标求出向量在基下的坐标。

换基操作详解如下:

结论参考:

相似矩阵的实质

行列式的本质

行列式的实质

引用自童哲的回答

1,行列式是针对一个的矩阵而言的。表示一个维空间到维空间的线性变换。那么什么是线性变换呢?无非是一个压缩或拉伸啊。假想原来空间中有一个维的立方体(随便什么形状),其中立方体内的每一个点都经过这个线性变换,变成维空间中的一个新立方体。

2,原来立方体有一个体积,新的立方体也有一个体积

3,行列式是一个数对不对?这个数其实就是 ,结束了。

就这么简单?没错,就这么简单。

所以说:行列式的本质就是一句话:

行列式就是线性变换的放大率!

理解了行列式的物理意义,很多性质你根本就瞬间理解到忘不了!!!比如这个重要的行列式乘法性质:

道理很简单,因为放大率是相乘的啊~!

你先进行一个变换,再进行一个变换,放大两次的放大率,就是式子左边。
你把“先进行变换,再进行变换”定义作一个新的变换,叫做“”,新变换的放大律就是式子右边。

然后你要问等式两边是否一定相等,我可以明确告诉你:too simple 必须相等。因为其实只是简单的把事实陈述出来了。这就好像:

“ 你经过股票投资,把1块钱放大3被变成了3块钱,然后经过实业投资,把3块钱中的每一块钱放大5倍成了5块钱。请问你总共的投资放大率是多少?”

翻译成线性代数的表达就是:

这还不够!我来解锁新的体验哈~

上回咱们说到行列式其实就是线性变换的放大率,所以你理解了:

那么很自然,你很轻松就理解了:

so easy,因为

同时你也必须很快能理解了

“矩阵可逆” 完全等价于 “

因为再自然不过了啊,试想是什么意思呢?不就是线性变换把之前说的维立方体给拍扁了啊?!这就是《三体》中的”降维打击”有木有!!!如来神掌有木有!!!直接把3维立方体 piaji一声~一掌拍成2维的纸片,纸片体积多少呢?当然是 0 啦!

请注意我们这里说的体积都是针对维空间而言的, 就表示新的立方体在 维空间体积为0,但是可能在维还是有体积的,只是在 维空间的标准下为0而已。好比一张纸片,“2维体积”也就是面积可以不为0,但是“3维体积”是妥妥的0。

所以凡是的矩阵都是耍流氓,因为这样的变换以后就再也回不去了,降维打击是致命性的。这样的矩阵必然是没有逆矩阵 的。这就是物理意义和图象思维对理解数学概念的重要性。

当然要证明也是小菜一碟轻而易举的:

可知

这怎么可能啊~? 了,那么等于多少呢?毫无办法,只能不存在。一个矩阵怎么可能行列式不存在呢?只能是因为 不存在。所以自然不可逆。

时间: 2024-12-17 07:27:12

『理论』科学计算专项_线性代数几何原理剖析的相关文章

『理论』科学计算专项_协方差

一.统计学的基本概念 统计学里最基本的概念就是样本的均值.方差.标准差.首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述: 均值: 标准差: 方差: 均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均. 以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],两个集合的均值都是10,但显然两个集合的差别是很大的,计算两者的标准差,前者是8.3后者是1.8,显然后者较为集中,故其标准差小一些,标

『python』科学计算专项_科学绘图库matplotlib学习

思想:万物皆对象 作业 第一题: import numpy as np import matplotlib.pyplot as plt x = [1, 2, 3, 1] y = [1, 3, 0, 1] def plot_picture(x, y): plt.plot(x, y, color='r', linewidth='2', linestyle='--', marker='D', label='one') plt.xticks(list(range(-5,5,1))) plt.yticks

『python』科学计算专项_科学绘图库matplotlib学习之绘制动画(待续)

示例代码 简单调用绘图 from matplotlib import pyplot as plt import matplotlib.animation as animation import numpy as np def update_point(num): fig_points.set_data(data[:, 0:num]) return fig_points, fig1 = plt.figure() num_point = 50 data = np.random.rand(2, num

『python』科学计算专项_科学绘图库matplotlib学习(下)

基本的读取csv文件并绘制饼图 由于之前没有过实际处理的经验,所以这个程序还是值得一看,涉及了处理表格数据的基本方法: import matplotlib.pyplot as plt import pandas as pd # csv读取文件 data = pd.read_csv('OutOrder.csv',encoding='gb2312') # 每一列都兼容numpy的方法 a = data['方式'].values # 获取本列的内容的各种可能 typename = [] for i i

『TensorFlow』函数查询列表_神经网络相关

神经网络(Neural Network) 激活函数(Activation Functions) 操作 描述 tf.nn.relu(features, name=None) 整流函数:max(features, 0) tf.nn.relu6(features, name=None) 以6为阈值的整流函数:min(max(features, 0), 6) tf.nn.elu(features, name=None) elu函数,exp(features) - 1 if < 0,否则featuresE

『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1 = nn.Conv2d(3, 6, 5)

『PyTorch』第十弹_循环神经网络

『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 对于torch中的RNN相关类,有原始和原始Cell之分,其中RNN和RNNCell层的区别在于前者一次能够处理整个序列,而后者一次只处理序列中一个时间点的数据,前者封装更完备更易于使用,后者更具灵活性.实际上RNN层的一种后端实现方式就是调用RNNCell来实现的. 一.nn.RNN import torch as t from torch import nn from torch.autograd import Variab

『PyTorch』第五弹_深入理解Tensor对象_中下:数学计算以及numpy比较

一.简单数学操作 1.逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域. a = t.arange(0,6).view(2,3) print("a:",a) print("t.cos(a):",t.cos(a)) print("a % 3:",a % 3) # t.fmod(a, 3) print("a ** 2:",a ** 2) # t.po

『TensorFlow』徒手装高达_初号机_添加训练模组并整合为可用分类网络

摘要: 本次整合了前面两节的模组,并添加向前传播&反馈训练部分,使之成为一个包含训练&验证&测试的分类网络. 文件架构: 代码整合: image_info.py,图片读取部分 1 import glob 2 import os.path 3 import random 4 import numpy as np 5 import tensorflow as tf 6 7 def creat_image_lists(validation_percentage,testing_perce