优先队列之二叉堆与d-堆

二叉堆简介

平时所说的堆,若没加任何修饰,一般就是指二叉堆。同二叉树一样,堆也有两个性质,即结构性和堆序性。正如AVL树一样,对堆的以此操作可能破坏者两个性质中的一个,因此,堆的操作必须要到堆的所有性质都被满足时才能终止。

结构性质

堆是一棵完全填满的二叉树,因为完全二叉树很有规律,所以它可以用一个数组表示而不需要指针。如下图所示,图2中的数组对应图1中的堆。

                 

图1:二叉堆                                                                                   图2:二叉堆的数组存储

对于任意位置i上的元素,其左儿子在位置2i处,右儿子在位置2i+1处,而它的父亲在i/2。因此,不仅指针这里不需要,而且遍历该树所需要的操作也十分简单。这种表示法的唯一问题在于:最大的堆大小需要事先估计,但对于典型的情况者并不成问题,图2中堆的大小是13个元素。该数组有一个位置0,用做哨兵,后面会有阐述。

因此,一个堆的数据结构将由一个数组,一个代表最大值的整数以及当前堆的大小组成。

堆序性质

使操作能快速执行的性质是堆序性。在一个堆中,对于每个节点X,X的父亲中的关键字小于(或等于)X中的关键字,根节点除外(根节点没有父亲)。图3中,左边的是堆,右边的不是(虚线表示堆序性质被破坏)。

图3:两棵完全二叉树

基本操作

Insert(插入):

为了将一个元素X插入到堆中,我们在下一个空闲位置创建一个空穴,否则该堆将不是完全树。如果X可以放入到该空穴中,那么插入完成。否则,我们把空穴的父节点上的元素移入该空穴中,这样,空穴就朝着根的方向上行一步。继续该过程直到X能被放入到空穴中为止。图4表示,为了插入14,我们在堆的下一个可用位置建立一个空穴,由于将14插入空穴破坏了堆序性质,因此将31移入该空穴,图5继续这种策略,直到找到14的正确位置。

               

图4:创建一个空穴,再将空穴上冒                                       图5:将14插入到前面的堆中的其余两步

这种策略叫做上虑。新元素在堆中上虑直到找出正确的位置;使用如下代码,很容易实现。

如果要插入的元素师新的最小值,那么它将一直被推向顶端,这样在某一时刻,i将是1,我们就需要令程序跳出while循环。当然可以通过明确的测试做到这一点。不过,这里采用的是把一个很小的值放到位置0处以使while循环终止,这个值必须小于堆中的任何值,称之为标记或哨兵。这类似于链表中头结点的使用。通过添加的这个标记,避免了每次循环都要执行一次测试,这是简单的空间换时间策略。

DeleteMin(删除最小元):

找出最小元是很容易的;困难的部分是删除它。当删除一个最小元时,在根节点处产生了一个空穴。由于现在堆少了一个元素,因此对中最后一个元素X必须移到该堆的某个地方。如果X可以被放入空穴中,那么DeleteMin完成。不过这一般都不可能,因此我们将空穴的两个儿子中较小者移入空穴中,这样就把空穴向下推了一层,重复该步骤,知道X可以被放入空穴中。因此,我们的做法是将X置入沿着从根开始包含最小儿子的一条路径上的一个正确的位置。

图6显示DeleteMin之前的堆,删除13之后,我们必须要正确的将31放到堆中,31不能放在空穴中,因为这将破坏堆序性质,于是,我们把较小的儿子14置入空穴,同时空穴向下滑一层,重复该过程,把19置入空穴,在更下一层上建立一个新的空穴,然后26置入空穴,在底层又建立一个新的空穴,最后,我们得以将31置入空穴中。这种策略叫做下虑。

          

图6 在根处建立空穴                                                             图7:将空穴下滑一层

图8:空穴移到底层,插入31

BinHeap.h

typedef int ElementType;
#ifndef _BinHeap_H
#define MinPQSize 10
#define MinData -32767
struct HeapStruct;
typedef struct HeapStruct *PriorityQueue;

PriorityQueue Initialize(int MaxElements);
void Destroy(PriorityQueue H);
void MakeEmpty(PriorityQueue H);
void Insert(ElementType X,PriorityQueue H);
ElementType DleteMin(PriorityQueue H);
ElementType FindMin(PriorityQueue H);
int IsEmpty(PriorityQueue H);
int IsFull(PriorityQueue H);

#endif

BinHeap.c

#include"BinHeap.h"
#include"fatal.h"

struct HeapStruct
{
    int Capacity;
    int Size;
    ElementType *Elements;
};

PriorityQueue Initialize(int MaxElements)
{
    PriorityQueue H;
    if(MaxElements<MinPQSize)
    Error("Priority queue size is too small");
    H=malloc(sizeof(struct HeapStruct));
    H->Elements=malloc((MaxElements+1)*sizeof(ElementType));
    if(H->Elements==NULL)
    FatalError("Out of space!!!");
    H->Capacity=MaxElements;
    H->Size=0;
    H->Elements[0]=MinData;
    return H;
}

void MakeEmpty(PriorityQueue H)
{
    H->Size=0;
}

void Insert(ElementType X,PriorityQueue H)
{
    int i;
    if(IsFull(H))
    {
        Error("Priority queue is full");
    }
    for(i=++H->Size;X<H->Elements[i/2];i=i/2)
    {
        H->Elements[i]=H->Elements[i/2];
    }
    H->Elements[i]=X;
}

ElementType DeleteMin(PriorityQueue H)
{
    int i,Child;
    ElementType MinElement,LastElement;
    if(IsEmpty(H))
    {
        Error("Priority queue is empty");
        return H->Elements[0];
    }
    MinElement=H->Elements[1];
    LastElement=H->Elements[H->Size--];
    for(i=1;i<H->Size;i=Child)
    {
        Child=2*i;
        if(Child!=H->Size&&H->Elements[Child]>H->Elements[Child+1])
            Child++;
        if(LastElement>H->Elements[Child])
            H->Elements[i]=H->Elements[Child];
        else
            break;
    }
    H->Elements[i]=LastElement;
    return MinElement;
}

ElementType FindMin(PriorityQueue H)
{
    return H->Elements[1];
}

int IsEmpty(PriorityQueue H)
{
    return H->Size==0;
}

int IsFull(PriorityQueue H)
{
    return H->Capacity==H->Size;
}
void Destroy(PriorityQueue H)
{
    free(H->Elements);
    free(H);
}

UseBinHeap.c

#include <stdio.h>
#include <stdlib.h>
#include"BinHeap.h"
int main()
{
    int i;
    PriorityQueue H=Initialize(MinPQSize);
    MakeEmpty(H);
    for(i=0;i<MinPQSize;i++)
    {
         Insert(i,H);
    }
    printf("Hello world!\n");
    return 0;
}

d-堆

二叉堆因为实现简单,因此在需要优先队列的时候几乎总是使用二叉堆。d-堆是二叉堆的简单推广,它恰像一个二叉堆,只是所有的节点都有d个儿子(因此,二叉堆又叫2-堆)。下图表示的是一个3-堆。注意,d-堆要比二叉堆浅得多,它将Insert操作的运行时间改进为 。然而,对于大的d,DeleteMin操作费时得多,因为虽然树浅了,但是d个儿子中的最小者是必须找到的,如果使用标准算法,将使用d-1次比较,于是将此操作的时间提高到 。如果d是常数,那么当然两种操作的运行时间都为 O(logN)。虽然仍可以使用一个数组,但是,现在找出儿子和父亲的乘法和除法都有个因子d,除非d是2的幂,否则会大大增加运行时间,因为我们不能再通过二进制移位来实现除法和乘法了。D-堆在理论上很有趣,因为存在许多算法,其插入次数比删除次数多得多,而且,当优先队列太大不能完全装入内存的时候,d-堆也是很有用的,在这种情况下,d-堆能够以与B-树大致相同的方式发挥作用。

除了不能执行Find操作外(指以对数执行),堆的实现最明显的两个缺点是:将两个堆合并成一个堆是很困难的。这种附加的操作叫做Merge。存在许多实现堆的方法使得Merge操作的运行时间为O(logN),如下篇介绍的左式堆。

优先队列之二叉堆与d-堆

时间: 2024-10-11 22:57:05

优先队列之二叉堆与d-堆的相关文章

算法学习 - 优先队列的二叉堆实现

PriorityQuenue 优先队列就是作业调度类的ADT,这里用二叉堆来实现. 优先队列最少有两个操作:插入(Insert)和删除最小者(DeleteMin). 插入操作图解: 图片来源:www.educity.cn 删除操作图解: 图片来源:www.cfanz.cn 代码实现: // // main.cpp // binaryHeap // // Created by Alps on 14-8-17. // Copyright (c) 2014年 chen. All rights rese

《Algorithms算法》笔记:优先队列(2)——二叉堆

二叉堆 1 二叉堆的定义 堆是一个完全二叉树结构(除了最底下一层,其他层全是完全平衡的),如果每个结点都大于它的两个孩子,那么这个堆是有序的. 二叉堆是一组能够用堆有序的完全二叉树排序的元素,并在数组中按照层级存储(不用数组的第一个位置) 2 二叉堆的性质 最大的元素在a[1] (root结点) 每个k的父亲在k/2 每个k的孩子在k*2和k*2+1 3 二叉堆的操作 3.1 上浮(孩子大于父亲)--对应插入操作 循环,每次比较自己和父亲,如果比父亲大就交换,直到root. 3.2 插入 先把元

PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由

<pre class="code"><span style="font-family: %value; font-size: 14px;">03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top down, and left to right. Input Specification: Each inpu

二叉堆,优先队列,二叉树的理解

1. 二叉堆是完全二叉树,即它的N级子节点放慢之后才会去放N+1级子节点 2. 二叉堆用数组实现,每个子节点通过固定的索引找到(由完全二叉树保证) 3. 二叉堆排序只保证堆顶有效,即堆顶是最大值或最小值,是优先队列实现的不二选择 4. 二叉堆删除节点,需要重新组织堆内结构,不太高效 5. 二叉树,也叫二叉搜索树,用关系型容器实现,适用于普通的查找,排序

优先队列 - 数据结构 (二叉堆)

优先队列包括二叉堆.d-堆.左式堆.斜堆.二项队列等 1.二叉堆 堆是一棵被完全填满的二叉树,有可能例外的是在底层,底层上的元素从左到右填入.这样的树称为完全二叉树. 堆序的性质:在一个堆中,对于每一个节点X,X的父亲的关键字小于(或等于)X中的关键字,根节点除外(它没有父节点).完全二叉树可以用数组实现. //关于二叉堆的头文件定义 如果要插入的元素是新的最小值,那么它将一直被推向堆顶.这样在某一个时刻,i将是1,我们就需要另Insert函数令程序跳出while循环,这个值必须保证小于或者至少

纯数据结构Java实现(6/11)(二叉堆&amp;优先队列)

堆其实也是树结构(或者说基于树结构),一般可以用堆实现优先队列. 二叉堆 堆可以用于实现其他高层数据结构,比如优先队列 而要实现一个堆,可以借助二叉树,其实现称为: 二叉堆 (使用二叉树表示的堆). 但是二叉堆,需要满足一些特殊性质: 其一.二叉堆一定是一棵完全二叉树 (完全二叉树可以用数组表示,见下面) 完全二叉树缺失的部分一定是在右下方.(每层一定是从左到右的顺序优先存放) 完全二叉树的结构,可以简单理解成按层安放元素的.(所以数组是不错的底层实现) 其二.父节点一定比子节点大 (针对大顶堆

温故知新,基础复习(二叉堆排序)

温故知新,基础复习(二叉堆排序) 最小堆(最终数组的数据是降序),最大堆(最终数组的数据是升序) 下例是最小堆 #include <stdio.h> #include <stdlib.h> void Swap(int Arra[],unsigned int LeftIndex,unsigned int RightIndex) { int TeampValue = Arra[LeftIndex]; Arra[LeftIndex]=Arra[RightIndex]; Arra[Righ

结构之美——优先队列基本结构(四)——二叉堆、d堆、左式堆、斜堆

实现优先队列结构主要是通过堆完成,主要有:二叉堆.d堆.左式堆.斜堆.二项堆.斐波那契堆.pairing 堆等. 1. 二叉堆 1.1. 定义 完全二叉树,根最小. 存储时使用层序. 1.2. 操作 (1). insert(上滤) 插入末尾 26,不断向上比较,大于26则交换位置,小于则停止. (2). deleteMin(下滤) 提取末尾元素,放在堆顶,不断下滤: (3). 其他操作: 都是基于insert(上滤)与deleteMin(下滤)的操作. 减小元素:减小节点的值,上滤调整堆. 增大

优先队列及(二叉)堆

数据结构书籍与算法书(包括算法导论.算法设计)通常将优先队列(Priority Queue)与堆(Heap)放在一起讲,算法导论上先讲堆这个特殊的数据结构,后讲堆的两个应用,堆排序与优先队列.算法设计这本书先讲优先队列是个什么样的数据结构,有什么性质,为什么需要优先队列这种数据结构,然后讲实现优先队列有什么样的要求,而这些要求数组(Array)和链表(Linked List)都不能满足,所以我们需要设计一种新的数据结构来满足这些要求,那就是堆.个人更喜欢算法设计书上这种顺序. 某些特定的算法,只