【58沈剑架构系列】线程数究竟设多少合理

一、需求缘起

Web-Server通常有个配置,最大工作线程数,后端服务一般也有个配置,工作线程池的线程数量,这个线程数的配置不同的业务架构师有不同的经验值,有些业务设置为CPU核数的2倍,有些业务设置为CPU核数的8倍,有些业务设置为CPU核数的32倍。

“工作线程数”的设置依据是什么,到底设置为多少能够最大化CPU性能,是本文要讨论的问题。

二、一些共性认知

在进行进一步深入讨论之前,先以提问的方式就一些共性认知达成一致。

提问:工作线程数是不是设置的越大越好?

回答:肯定不是的

1)一来服务器CPU核数有限,同时并发的线程数是有限的,1核CPU设置10000个工作线程没有意义

2)线程切换是有开销的,如果线程切换过于频繁,反而会使性能降低

提问:调用sleep()函数的时候,线程是否一直占用CPU

回答:不占用,等待时会把CPU让出来,给其他需要CPU资源的线程使用

不止调用sleep()函数,在进行一些阻塞调用,例如网络编程中的阻塞accept()【等待客户端连接】和阻塞recv()【等待下游回包】也不占用CPU资源

提问:如果CPU是单核,设置多线程有意义么,能提高并发性能么?

回答:即使是单核,使用多线程也是有意义的

1)多线程编码可以让我们的服务/代码更加清晰,有些IO线程收发包,有些Worker线程进行任务处理,有些Timeout线程进行超时检测

2)如果有一个任务一直占用CPU资源在进行计算,那么此时增加线程并不能增加并发,例如这样的一个代码

while(1){ i++; }

该代码一直不停的占用CPU资源进行计算,会使CPU占用率达到100%

3)通常来说,Worker线程一般不会一直占用CPU进行计算,此时即使CPU是单核,增加Worker线程也能够提高并发,因为这个线程在休息的时候,其他的线程可以继续工作

三、常见服务线程模型

了解常见的服务线程模型,有助于理解服务并发的原理,一般来说互联网常见的服务线程模型有如下两种

IO线程与工作线程通过队列解耦类模型


如上图,大部分Web-Server与服务框架都是使用这样的一种“IO线程与Worker线程通过队列解耦”类线程模型:

1)有少数几个IO线程监听上游发过来的请求,并进行收发包(生产者)

2)有一个或者多个任务队列,作为IO线程与Worker线程异步解耦的数据传输通道(临界资源)

3)有多个工作线程执行正真的任务(消费者)

这个线程模型应用很广,符合大部分场景,这个线程模型的特点是,工作线程内部是同步阻塞执行任务的(回想一下tomcat线程中是怎么执行Java程序的,dubbo工作线程中是怎么执行任务的),因此可以通过增加Worker线程数来增加并发能力,今天要讨论的重点是“该模型Worker线程数设置为多少能达到最大的并发”。

纯异步线程模型

任何地方都没有阻塞,这种线程模型只需要设置很少的线程数就能够做到很高的吞吐量,Lighttpd有一种单进程单线程模式,并发处理能力很强,就是使用的的这种模型。该模型的缺点是:

1)如果使用单线程模式,难以利用多CPU多核的优势

2)程序员更习惯写同步代码,callback的方式对代码的可读性有冲击,对程序员的要求也更高

3)框架更复杂,往往需要server端收发组件,server端队列,client端收发组件,client端队列,上下文管理组件,有限状态机组件,超时管理组件的支持

however,这个模型不是今天讨论的重点。

四、工作线程的工作模式

了解工作线程的工作模式,对量化分析线程数的设置非常有帮助:


上图是一个典型的工作线程的处理过程,从开始处理start到结束处理end,该任务的处理共有7个步骤:

1)从工作队列里拿出任务,进行一些本地初始化计算,例如http协议分析、参数解析、参数校验等

2)访问cache拿一些数据

3)拿到cache里的数据后,再进行一些本地计算,这些计算和业务逻辑相关

4)通过RPC调用下游service再拿一些数据,或者让下游service去处理一些相关的任务

5)RPC调用结束后,再进行一些本地计算,怎么计算和业务逻辑相关

6)访问DB进行一些数据操作

7)操作完数据库之后做一些收尾工作,同样这些收尾工作也是本地计算,和业务逻辑相关

分析整个处理的时间轴,会发现:

1)其中1,3,5,7步骤中【上图中粉色时间轴】,线程进行本地业务逻辑计算时需要占用CPU

2)而2,4,6步骤中【上图中橙色时间轴】,访问cache、service、DB过程中线程处于一个等待结果的状态,不需要占用CPU,进一步的分解,这个“等待结果”的时间共分为三部分:

2.1)请求在网络上传输到下游的cache、service、DB

2.2)下游cache、service、DB进行任务处理

2.3)cache、service、DB将报文在网络上传回工作线程

五、量化分析并合理设置工作线程数

最后一起来回答工作线程数设置为多少合理的问题。

通过上面的分析,Worker线程在执行的过程中,有一部计算时间需要占用CPU,另一部分等待时间不需要占用CPU,通过量化分析,例如打日志进行统计,可以统计出整个Worker线程执行过程中这两部分时间的比例,例如:

1)时间轴1,3,5,7【上图中粉色时间轴】的计算执行时间是100ms

2)时间轴2,4,6【上图中橙色时间轴】的等待时间也是100ms

得到的结果是,这个线程计算和等待的时间是1:1,即有50%的时间在计算(占用CPU),50%的时间在等待(不占用CPU):

1)假设此时是单核,则设置为2个工作线程就可以把CPU充分利用起来,让CPU跑到100%

2)假设此时是N核,则设置为2N个工作现场就可以把CPU充分利用起来,让CPU跑到N*100%

结论:

N核服务器,通过执行业务的单线程分析出本地计算时间为x,等待时间为y,则工作线程数(线程池线程数)设置为 N*(x+y)/x,能让CPU的利用率最大化。

经验:

一般来说,非CPU密集型的业务(加解密、压缩解压缩、搜索排序等业务是CPU密集型的业务),瓶颈都在后端数据库,本地CPU计算的时间很少,所以设置几十或者几百个工作线程也都是可能的。

六、结论

N核服务器,通过执行业务的单线程分析出本地计算时间为x,等待时间为y,则工作线程数(线程池线程数)设置为 N*(x+y)/x,能让CPU的利用率最大化。

【文章转载自微信公众号“架构师之路”】

时间: 2024-10-12 07:28:10

【58沈剑架构系列】线程数究竟设多少合理的相关文章

【58沈剑架构系列】一分钟了解负载均衡的一切

什么是负载均衡 负载均衡(Load Balance)是分布式系统架构设计中必须考虑的因素之一,它通常是指,将请求/数据[均匀]分摊到多个操作单元上执行,负载均衡的关键在于[均匀]. 常见的负载均衡方案 常见互联网分布式架构如上,分为客户端层.反向代理nginx层.站点层.服务层.数据层.可以看到,每一个下游都有多个上游调用,只需要做到,每一个上游都均匀访问每一个下游,就能实现“将请求/数据[均匀]分摊到多个操作单元上执行”. [客户端层->反向代理层]的负载均衡 [客户端层]到[反向代理层]的负

【58沈剑架构系列】lvs为何不能完全替代DNS轮询

上一篇文章“一分钟了解负载均衡的一切”引起了不少同学的关注,评论中大家争论的比较多的一个技术点是接入层负载均衡技术,部分同学持这样的观点: 1)nginx前端加入lvs和keepalived可以替代“DNS轮询” 2)F5能搞定接入层高可用.扩展性.负载均衡,可以替代“DNS轮询” “DNS轮询”究竟是不是过时的技术,是不是可以被其他方案替代,接入层架构技术演进,是本文将要细致讨论的内容. 一.问题域 nginx.lvs.keepalived.f5.DNS轮询,每每提到这些技术,往往讨论的是接入

【58沈剑架构系列】秒杀系统架构优化思路

一.秒杀业务为什么难做 1)im系统,例如qq或者微博,每个人都读自己的数据(好友列表.群列表.个人信息): 2)微博系统,每个人读你关注的人的数据,一个人读多个人的数据: 3)秒杀系统,库存只有一份,所有人会在集中的时间读和写这些数据,多个人读一个数据. 例如:小米手机每周二的秒杀,可能手机只有1万部,但瞬时进入的流量可能是几百几千万. 又例如:12306抢票,票是有限的,库存一份,瞬时流量非常多,都读相同的库存.读写冲突,锁非常严重,这是秒杀业务难的地方.那我们怎么优化秒杀业务的架构呢? 二

【58沈剑架构系列】互联网架构,如何进行容量设计?

一,需求缘起 互联网公司,这样的场景是否似曾相识: 场景一:pm要做一个很大的运营活动,技术老大杀过来,问了两个问题: (1)机器能抗住么? (2)如果扛不住,需要加多少台机器? 场景二:系统设计阶段,技术老大杀过来,又问了两个问题: (1)数据库需要分库么? (2)如果需要分库,需要分几个库? 技术上来说,这些都是系统容量预估的问题,容量设计是架构师必备的技能之一.常见的容量评估包括数据量.并发量.带宽.CPU/MEM/DISK等,今天分享的内容,就以[并发量]为例,看看如何回答好这两个问题.

【58沈剑架构系列】缓存架构设计细节二三事

本文主要讨论这么几个问题: (1)“缓存与数据库”需求缘起 (2)“淘汰缓存”还是“更新缓存” (3)缓存和数据库的操作时序 (4)缓存和数据库架构简析   一.需求缘起 场景介绍 缓存是一种提高系统读性能的常见技术,对于读多写少的应用场景,我们经常使用缓存来进行优化. 例如对于用户的余额信息表account(uid, money),业务上的需求是: (1)查询用户的余额,SELECT money FROM account WHERE uid=XXX,占99%的请求 (2)更改用户余额,UPDA

【58沈剑架构系列】细聊冗余表数据一致性

本文主要讨论四个问题: (1)为什么会有冗余表的需求 (2)如何实现冗余表 (3)正反冗余表谁先执行 (4)冗余表如何保证数据的一致性   一.需求缘起 互联网很多业务场景的数据量很大,此时数据库架构要进行水平切分,水平切分会有一个patition key,通过patition key的查询能够直接定位到库,但是非patition key上的查询可能就需要扫描多个库了. 例如订单表,业务上对用户和商家都有订单查询需求: Order(oid, info_detail) T(buyer_id, se

【58沈剑架构系列】缓存与数据库一致性保证

本文主要讨论这么几个问题: (1)啥时候数据库和缓存中的数据会不一致 (2)不一致优化思路 (3)如何保证数据库与缓存的一致性 一.需求缘起 上一篇<缓存架构设计细节二三事>(点击查看)引起了广泛的讨论,其中有一个结论:当数据发生变化时,“先淘汰缓存,再修改数据库”这个点是大家讨论的最多的. 上篇文章得出这个结论的依据是,由于操作缓存与操作数据库不是原子的,非常有可能出现执行失败. 假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧

【58沈剑架构系列】如何实施异构服务器的负载均衡及过载保护?

零.需求缘起 第一篇文章“一分钟了解负载均衡”和大家share了互联网架构中反向代理层.站点层.服务层.数据层的常用负载均衡方法. 第二篇文章“lvs为何不能完全代替DNS轮询”和大家share了互联网接入层负载均衡需要解决的问题及架构演进. 在这两篇文章中,都强调了“负载均衡是指,将请求/数据[均匀]分摊到多个操作单元上执行,负载均衡的关键在于[均匀]”. 然而,后端的service有可能部署在硬件条件不同的服务器上: 1)如果对标最低配的服务器“均匀”分摊负载,高配的服务器的利用率不足: 2

【58沈剑架构系列】一分钟写好连接池

一.如何通过连接访问下游 工程架构中有很多访问下游的需求,下游包括但不限于服务/数据库/缓存,其通讯步骤是为: (1)与下游建立一个连接 (2)通过这个连接,收发请求 (3)交互结束,关闭连接,释放资源 这个连接是什么呢,通过连接怎么调用下游接口?服务/数据库/缓存,官方会提供不同语言的Driver.Document.DemoCode来教使用方建立连接与调用接口,以MongoDB的C++官方Driver API为例(伪代码): DBClientConnection* c = new DBClie