20150410 递归实现汉诺塔算法

20150410 递归实现汉诺塔算法

2015-04-10 Lover雪儿

 1 //汉诺塔
 2 #include <stdio.h>
 3
 4 static int i = 0;
 5
 6 //将n个盘子从x借助y移动z
 7 //n:移动的个数  x:源地址  y:中间柱子  z:目的柱子
 8 void move(int n, char x, char y, char z)
 9 {
10     if(1 == n){
11         printf("第%d次移动 %c--->%c\n", ++i, x, z);
12     }else{
13         move(n-1, x, z, y);            //将n-1个盘子从 x 借助 z 到 y
14         printf("第%d次移动 %c--->%c\n", ++i, x, z);    //将第n个盘子从 x 移动到 z
15         move(n-1, y, x, z);            //将n-1个盘子从 y 借助 x 移动到 z
16     }
17 }
18
19 int main(void){
20     int n;
21
22     printf("请输入汉诺塔的层数:\n");
23     scanf("%d",&n);
24     printf("移动的步骤如下:\n");
25     move(n, ‘X‘, ‘Y‘, ‘Z‘);
26     printf("移动完成,总共走了%d次!\n",i);
27     return 0;
28 }

当汉诺塔层数为3时,总共走了7次:

当汉诺塔的层数为4时,总共走了15次:

时间: 2024-12-17 10:46:40

20150410 递归实现汉诺塔算法的相关文章

python 递归实现汉诺塔算法

def move(n,a,b,c): if (n == 1): print ( "第 ", n ," 步: 将盘子由 " ,a ," 移动到 " ,c) #return else: move(n-1,a,c,b) #首先需要把 (N-1) 个圆盘移动到 b print ("A==>b") move(1,a,b,c) #将a的最后一个圆盘移动到c move(n-1,b,a,c) #再将b的(N-1)个圆盘移动到c prin

基于Python的汉诺塔算法

首先贴出Python编写的汉诺塔算法的代码: def hanoti(n,x1,x2,x3):    if(n == 1):        print('move:',x1,'-->',x3)        return    hanoti(n-1,x1,x3,x2)    print('move:',x1,'-->',x3)    hanoti(n-1,x2,x1,x3) hanoti(3,'A','B','C') 汉诺塔问题归根结底就是一个循环问题,循环包括两大要素:循环体.循环结束条件 首

Java算法分析2—————几种排序&amp;汉诺塔算法

一:插入排序 /* * 插入排序 */ /* * 原序列 [12] 15 9 20 6 31 24 * 第0趟 [12 15] 9 20 6 31 24 * 第1趟 [9 12 15] 20 6 31 24 * 第2趟 [9 12 15 20] 6 31 24 * 第3趟 [6 9 12 15 20] 31 24 * n个数,一共需要多少趟?n个数,n-1趟 * 第0趟,把1位置的数,和1位置之前的数进行比较,按大小顺序排列 * 第1趟,把2位置的数,和2位置之前的数进行比较,按大小顺序排列 .

递归__汉诺塔

要将n个盘子从a 通过b 移动到c那么 就要先将 n-1个盘子从a通过c 移动到b再将a最底下的盘子移动到 c之后再将 n-1个盘子从b通过a移动到c由此可得到 递归公式hanoi(int n,char from,char denpend_on,char to):{ //n:盘子数from:a,denpend_on:b,to:c //此语句意义为 将n个盘子从from 通过 denpend_on移动到tohanoi(n-1,from,to,denpend_on);move(n,from,to);

16、蛤蟆的数据结构笔记之十六栈的应用之栈与递归之汉诺塔问题

16.蛤蟆的数据结构笔记之十六栈的应用之栈与递归之汉诺塔问题 本篇名言:"人生的价值,并不是用时间,而是用深度去衡量的." 继续栈与递归应用,汉诺塔问题. 欢迎转载,转载请标明出处: 1.  汉诺塔问题 汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一

Python递归实现汉诺塔

Python递归实现汉诺塔: def f3(n,x,y,z): if(n==1): print(x,'--->',z) else: f3(n-1,x,z,y) print(x,'--->',z) f3(n-1,y,x,z) n=int(input('请输入汉罗塔层数:')) f3(n,'X','Y','Z') 运行结果如下:

递归求汉诺塔的解

递归求汉诺塔的解 // 递归求汉诺塔的解.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<stdio.h> #include<conio.h> #include<windows.h> void HanoiTower(int,char,char,char); void main() { int n; char A='A',B='B',C='C'; printf("---Hanoi To

汉诺塔算法演示1.0

工作之余闲来无聊,于是就有了用JS来实现算法演示的想法,很久以前用JS实现过选择排序,不过源程序找不到了! 汉诺塔的递归算法: void move(int n,char a,char b,char c) { if(n==1) printf("\t%c->%c\n",a,c); //当n只有1个的时候直接从a移动到c else { move(n-1,a,c,b); //第n-1个要从a通过c移动到b printf("\t%c->%c\n",a,c); mo

Go基础之函数递归实现汉诺塔

Go递归实现汉诺塔 package main import "fmt" // a 是源,b 借助, c 目的长度 func tower(a, b, c string, layer int) { if layer == 1 { fmt.Println(a, "111->", c) return } // n-1 个 a 借助 c 到 b tower(a, c, b, layer-1) fmt.Println(a, "11->", c)