hdu1575 Tr A(矩阵快速幂)

题目:

Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3689    Accepted Submission(s): 2754

Problem Description

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。

Input

数据的第一行是一个T,表示有T组数据。

每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。

Output

对应每组数据,输出Tr(A^k)%9973。

Sample Input

2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9

Sample Output

2
2686

Author

xhd

Source

HDU 2007-1 Programming Contest

题意:给一个矩阵,求出A^k的迹。

思路:裸的矩阵快速幂。

代码:

#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include<climits>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std;

#define PB push_back
#define MP make_pair

#define REP(i,x,n) for(int i=x;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define FORD(i,h,l) for(int i=(h);i>=(l);--i)
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define RI(X) scanf("%d", &(X))
#define RII(X, Y) scanf("%d%d", &(X), &(Y))
#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
#define DRI(X) int (X); scanf("%d", &X)
#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define OI(X) printf("%d",X);
#define RS(X) scanf("%s", (X))
#define MS0(X) memset((X), 0, sizeof((X)))
#define MS1(X) memset((X), -1, sizeof((X)))
#define LEN(X) strlen(X)
#define F first
#define S second
#define Swap(a, b) (a ^= b, b ^= a, a ^= b)
#define Dpoint  strcut node{int x,y}
#define cmpd int cmp(const int &a,const int &b){return a>b;}

 /*#ifdef HOME
    freopen("in.txt","r",stdin);
    #endif*/
const int MOD = 1e9+7;
typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long LL;
typedef pair<int,int> PII;
//#define HOME

int Scan()
{
	int res = 0, ch, flag = 0;

	if((ch = getchar()) == '-')				//判断正负
		flag = 1;

	else if(ch >= '0' && ch <= '9')			//得到完整的数
		res = ch - '0';
	while((ch = getchar()) >= '0' && ch <= '9' )
		res = res * 10 + ch - '0';

	return flag ? -res : res;
}
/*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/

int a[15][15];
int n,k;
void multi(int a[][15],int b[][15],int ans[][15])
{

    int c[15][15];
    MS0(c);
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        for(int k=0;k<n;k++)
    {
        c[i][j]=(c[i][j]+a[i][k]*b[k][j])%9973;
    }
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        ans[i][j]=c[i][j];
}
void mypow(int a[][15],int k,int ans[][15])
{
    int temp[15][15];
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        temp[i][j]=a[i][j];
    while(k)
    {
        if(k&1)
            multi(ans,temp,ans);
        multi(temp,temp,temp);
        k>>=1;
    }
}
int ans[15][15];
int main()
{

int T;
RI(T);
while(T--)
{

    RII(n,k);
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        RI(a[i][j]);
   MS0(ans);
   for(int i=0;i<n;i++)
        ans[i][i]=1;
   mypow(a,k,ans);
   int res=0;
   for(int i=0;i<n;i++)
    res=(res+ans[i][i])%9973;
   printf("%d\n",res);

}

        return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-11 23:51:07

hdu1575 Tr A(矩阵快速幂)的相关文章

HDU1575:Tr A(矩阵快速幂模板题)

http://acm.hdu.edu.cn/showproblem.php?pid=1575 #include <iostream> #include <string.h> #include <stdlib.h> #include <cstdio> #include <algorithm> #define mod 9973 using namespace std; struct matrix { int a[11][11]; } init,res

hdu 1575 Tr A(矩阵快速幂入门)

Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2977    Accepted Submission(s): 2217 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有

Tr A(矩阵快速幂)

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3175    Accepted Submission(s): 2373 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据.每组数据的第一行有n(2 <=

HDU 1575 Tr A(矩阵快速幂)

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5537    Accepted Submission(s): 4161 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据.每组数据的第一行有n(2 <=

矩阵快速幂(入门) 学习笔记hdu1005, hdu1575, hdu1757

矩阵快速幂是基于普通的快速幂的一种扩展,如果不知道的快速幂的请参见http://www.cnblogs.com/Howe-Young/p/4097277.html.二进制这个东西太神奇了,好多优秀的算法都跟他有关系,这里所说的矩阵快速幂就是把原来普通快速幂的数换成了矩阵而已,只不过重载了一下运算符*就可以了,也就是矩阵的乘法,  当然也可以写成函数,标题中的这三个题都是关于矩阵快速幂的基础题.拿来练习练习熟悉矩阵快速幂,然后再做比较难点的,其实矩阵快速幂比较难的是构造矩阵.下面还是那题目直接说话

HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】

任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7572    Accepted Submission(s): 5539 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要

矩阵快速幂计算hdu1575

矩阵快速幂计算和整数快速幂计算相同.在计算A^7时,7的二进制为111,从而A^7=A^(1+2+4)=A*A^2*A^4.而A^2可以由A*A得到,A^4可以由A^2*A^2得到.计算两个n阶方阵的乘积复杂度为O(n^3).k的二进制大约有logk位,总的复杂度为O(n^3*logk). #define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<queue> #include<iomanip> #incl

矩阵快速幂刷题系列

来源自http://blog.csdn.net/chenguolinblog/article/details/10309423 hdu 1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5587    Accepted Submission(s): 4200 Problem Description A为一个方阵,则Tr

HDU 1575-Tr A(矩阵快速幂)

Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3169    Accepted Submission(s): 2367 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有