ZOJ 1698 (最大流入门)

Power NetworkTime Limit:5000MS    Memory Limit:32768KB    64bit IO Format:%lld
& %llu

SubmitStatusPracticeZOJ
1734

Appoint description:

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <=
c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line
(u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=sum of c(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed
is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

There are several data sets in the input text file. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data
triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc
doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input.
Input data terminate with an end of file and are correct.

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The
second data set encodes the network from figure 1.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20

7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7

(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5

(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15

6

EK临接矩阵版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n;
int flow[MAXN][MAXN],cap[MAXN][MAXN],p[MAXN],a[MAXN];
void Init()
{
	memset(flow,0,sizeof flow);
	memset(cap,0,sizeof cap);
}
int Ek(int s,int t){
	queue<int>q;
	int f=0;
	while(1){
		memset(a,0,sizeof a);
		while(!q.empty())q.pop();
		a[s]=INF;
		q.push(s);
		while(!q.empty()){
			int u=q.front();q.pop();
			for(int v=0;v<=n+1;v++)if(!a[v]&&cap[u][v]>flow[u][v]){
				q.push(v);
				p[v]=u;
				a[v]=min(a[u],cap[u][v]-flow[u][v]);
			}
		}
		if(a[t]==0)return f;
		int x=t;
		while(x!=s){
			flow[p[x]][x]+=a[t];
			flow[x][p[x]]-=a[t];
			x=p[x];
		}
		f+=a[t];
	}
	return f;
}
void addedge(int u,int v,int w){
	cap[u][v]+=w;
}
int main()//多源多汇点,在前面加个源点,后面加个汇点,转成单源单汇点
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int start,end;
    int np,nc,m;
    int u,v,z;
    while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
    {
        Init();
        while(m--)
        {
            while(getchar()!='(');
            scanf("%d,%d)%d",&u,&v,&z);
            u++;v++;
            addedge(u,v,z);
        }
        while(np--)
        {
            while(getchar()!='(');
            scanf("%d)%d",&u,&z);
            u++;
            addedge(0,u,z);
        }
        while(nc--)
        {
            while(getchar()!='(');
            scanf("%d)%d",&u,&z);
            u++;
            addedge(u,n+1,z);
        }
        start=0;
        end=n+1;
        int ans=Ek(start,end);
        cout<<ans<<endl;
    }
    return 0;
}

EK临接表版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n,a[MAXN],p[MAXN];
struct Edge
{
	int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
	edges.push_back((Edge){u,v,w,0});
	edges.push_back((Edge){v,u,0,0});
	int m=edges.size();
	G[u].push_back(m-2);
	G[v].push_back(m-1);
}
int Ek(int s,int t){
	queue<int>q;
	int f=0;
	while(1){
		memset(a,0,sizeof a);
		a[s]=INF;
		q.push(s);
		while(!q.empty()){
			int u=q.front();q.pop();
			for(int i=0;i<G[u].size();i++){
				Edge &e=edges[G[u][i]];
				if(!a[e.to]&&e.cap>e.flow){
					q.push(e.to);
					p[e.to]=G[u][i];
					a[e.to]=min(a[u],e.cap-e.flow);
				}
			}
		}
		if(a[t]==0)return f;
		int x=t;
		while(x!=s){
			edges[p[x]].flow+=a[t];
			edges[p[x]^1].flow-=a[t];
			x=edges[p[x]].from;
		}
		f+=a[t];
	}
	return f;
}
int main()//多源多汇点,在前面加个源点,后面加个汇点,转成单源单汇点
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int start,end;
    int np,nc,m;
    int u,v,z;
    while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
    {
        edges.clear();
        for(int i=0;i<=n+1;i++)G[i].clear();
        while(m--)
        {
            while(getchar()!='(');
            scanf("%d,%d)%d",&u,&v,&z);
            u++;v++;
            addedge(u,v,z);
        }
        while(np--)
        {
            while(getchar()!='(');
            scanf("%d)%d",&u,&z);
            u++;
            addedge(0,u,z);
        }
        while(nc--)
        {
            while(getchar()!='(');
            scanf("%d)%d",&u,&z);
            u++;
            addedge(u,n+1,z);
        }
        start=0;
        end=n+1;
        int ans=Ek(start,end);
        cout<<ans<<endl;
    }
    return 0;
}

dinic算法版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n,a[MAXN],p[MAXN];
int cur[MAXN],d[MAXN],vis[MAXN];
struct Edge
{
	int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
	edges.push_back((Edge){u,v,w,0});
	edges.push_back((Edge){v,u,0,0});
	int m=edges.size();
	G[u].push_back(m-2);
	G[v].push_back(m-1);
}
int bfs(int s,int t)
{
	memset(vis,0,sizeof vis);
	queue<int>q;
	q.push(s);
	vis[s]=1;
	d[s]=0;
	while(!q.empty()){
		int u=q.front();q.pop();
		for(int i=0;i<G[u].size();i++){
			Edge &e=edges[G[u][i]];
			if(!vis[e.to]&&e.cap>e.flow){
				q.push(e.to);
				vis[e.to]=1;
				d[e.to]=d[u]+1;
			}
		}
	}
	return vis[t];
}
int dfs(int x,int a,int t){
	if(x==t||a==0)return a;
	int flow=0,f=0;
	for(int &i=cur[x];i<G[x].size();++i){
		Edge &e=edges[G[x][i]];
		if(d[e.to]==d[x]+1&&(f=dfs(e.to,min(a,e.cap-e.flow),t))>0){
			e.flow+=f;
			edges[G[x][i]^1].flow-=f;
			flow+=f;
			a-=f;
			if(a==0)break;
		}
	}
	return flow;
}
int dinic(int s,int t){
	int flow=0;
	while(bfs(s,t)){
		memset(cur,0,sizeof cur);
		flow+=dfs(s,INF,t);
	}
	return flow;
}
int main()//多源多汇点,在前面加个源点,后面加个汇点,转成单源单汇点
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int start,end;
    int np,nc,m;
    int u,v,z;
    while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
    {
        edges.clear();
        for(int i=0;i<=n+1;i++)G[i].clear();
        while(m--)
        {
            while(getchar()!='(');
            scanf("%d,%d)%d",&u,&v,&z);
            u++;v++;
            addedge(u,v,z);
        }
        while(np--)
        {
            while(getchar()!='(');
            scanf("%d)%d",&u,&z);
            u++;
            addedge(0,u,z);
        }
        while(nc--)
        {
            while(getchar()!='(');
            scanf("%d)%d",&u,&z);
            u++;
            addedge(u,n+1,z);
        }
        start=0;
        end=n+1;
        int ans=dinic(start,end);
        cout<<ans<<endl;
    }
    return 0;
}
时间: 2024-10-26 18:16:41

ZOJ 1698 (最大流入门)的相关文章

HDU3549(最大流入门模板题)

public static void main(String[] args) { String a=null; if("aa".equals(a))//这种情形,不出现空指针异常 //if(a.equals("aa"))//出现空指针异常 { System.out.println(true); } else { System.out.println(false); } } 上面的两句不同的比较语句测试,第一句不出现空指针异常,第二句出现. 所以在变量和常量比较的时候

IO流入门-第十一章-PrintStream_PrintWriter

DataInputStream和DataOutputStream基本用法和方法示例 /* java.io.PrintStream:标准的输出流,默认打印到控制台,以字节方式 java.io.PrintWriter:以字符方式 */ import java.io.*; import java.util.Date; import java.text.*; public class PrintStreamTest01 { public static void main(String[] args) t

io流入门级别demo

import java.io.*; //import java.io.BufferedReader; //import java.io.BufferedWriter; //import java.io.File; //import java.io.FileInputStream; //import java.io.FileNotFoundException; //import java.io.FileOutputStream; //import java.io.FileReader; //imp

IO流入门-第十二章-ObjectInputStream_ObjectOutputStream

DataInputStream和DataOutputStream基本用法和方法示例,序列化和反序列化 import java.io.Serializable; //该接口是一个"可序列化"的 ,没有任何方法,是一个标识接口,还有Cloneable /* 标识接口的作用:标识作用,JVM如果看到对象实现了某个标识接口,会对它特殊待遇,会给该类添加一个属性,static final long serialVersionUID=xxx, 最好是自己指定一个唯一的,这样不会产生类的兼容问题.

IO流入门-第八章-BufferedWriter

BufferedWriter基本用法和方法示例 import java.io.*; public class BufferedWriterTest01 { public static void main(String[] args) throws Exception { //创建带有缓冲区的字符输出流 //BufferedWriter bw = new BufferedWriter(new FileWriter("temp04")); BufferedWriter bw = new B

最大流入门题目

HDU 3549 Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 8728    Accepted Submission(s): 4083 Problem Description Network flow is a well-known difficult problem for ACMers. Given a

IO流入门-第四部分-FileReader

FileReader基本用法和方法示例 /* java.io.Reader java.io.InputStreamReader 转换流(字节输入流---->字符输入流) java.io.FileReader 文件字符输入流 */ import java.io.*; public class FileReaderTest01 { public static void main(String[] args) throws Exception { //创建文件字符输入流 FileReader fr =

Drainage Ditches 最大流入门练习题,各种算法

Drainage Ditches 题目抽象:n个顶点,m条容量为ci的边组成的图,求源点为1,汇点为n的最大流. 分析:各种最大流算法. 1.ford() 1 #include <cstdio> 2 #include <algorithm> 3 #include <cmath> 4 #include <cstring> 5 using namespace std; 6 const int INF = 0x5fffffff; 7 const int MS =

hdu 3549 Flow Problem (最大流入门题)

增广路: 1 /************************************************************* 2 题目: Flow Problem(HDU 3549) 3 链接: http://acm.hdu.edu.cn/showproblem.php?pid=3549 4 题意: 给一个单向图,求从1到n的最大流 5 算法: 最大流之增广路(入门) 6 算法思想: 不断用BFS找通路,没每找一条路,记录这条路的最小流, 7 再给这条路上的所有流量减去这个最小值.