在R中使用支持向量机(SVM)进行数据挖掘(下)

书接上文

在R中使用支持向量机(SVM)进行数据挖掘(上)

http://blog.csdn.net/baimafujinji/article/details/49885481

第二种使用svm()函数的方式则是根据所给的数据建立模型。这种方式形式要复杂一些,但是它允许我们以一种更加灵活的方式来构建模型。它的函数使用格式如下(注意我们仅列出了其中的主要参数)。

svm(x, y = NULL, scale = TRUE, type = NULL, kernel = "radial",
degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),
coef0 = 0, cost = 1, nu = 0.5, subset, na.action = na.omit)

此处,x可以是一个数据矩阵,也可以是一个数据向量,同时也可以是一个稀疏矩阵。y是对于x数据的结果标签,它既可以是字符向量也可以为数值向量。x和y共同指定了将要用来建模的训练数据以及模型的基本形式。
参数type用于指定建立模型的类别。支持向量机模型通常可以用作分类模型、回归模型或者异常检测模型。根据用途的差异,在svm()函数中的type可取的值有C-classification、nu-classification、one-classification、eps-regression和nu-regression这五种类型中。其中,前三种是针对于字符型结果变量的分类方式,其中第三种方式是逻辑判别,即判别结果输出所需判别的样本是否属于该类别;而后两种则是针对数值型结果变量的分类方式。
此外,kernel是指在模型建立过程中使用的核函数。针对线性不可分的问题,为了提高模型预测精度,通常会使用核函数对原始特征进行变换,提高原始特征维度,解决支持向量机模型线性不可分问题。svm()函数中的kernel参数有四个可选核函数,分别为线性核函数、多项式核函数、高斯核函数及神经网络核函数。其中,高斯核函数与多项式核函数被认为是性能最好、也最常用的核函数。

核函数有两种主要类型:局部性核函数和全局性核函数,高斯核函数是一个典型的局部性核函数,而多项式核函数则是一个典型的全局性核函数。局部性核函数仅仅在测试点附近小领域内对数据点有影响,其学习能力强、泛化性能较弱;而全局性核函数则相对来说泛化性能较强、学习能力较弱。
对于选定的核函数,degree参数是指核函数多项式内积函数中的参数,其默认值为3。gamma参数给出了核函数中除线性内积函数以外的所有函数的参数,默认值为l。coef0参数是指核函数中多项式内积函数与sigmoid内积函数中的参数,默认值为0。
另外,参数cost就是软间隔模型中的离群点权重。最后,参数nu是用于nu-regression、nu-classification和one-classification类型中的参数。
一个经验性的结论是,在利用svm()函数建立支持向量机模型时,使用标准化后的数据建立的模型效果更好。
根据函数的第二种使用格式,在针对上述数据建立模型时,首先应该将结果变量和特征变量分别提取出来。结果向量用一个向量表示,特征向量用一个矩阵表示。在确定好数据后还应根据数据分析所使用的核函数以及核函数所对应的参数值,通常默认使用高斯内积函数作为核函数。下面给出一段示例代码

在使用第二种格式建立模型时,不需要特别强调所建立模型的形式,函数会自动将所有输入的特征变量数据作为建立模型所需要的特征向量。在上述过程中,确定核函数的gamma系数时所使用的代码所代表的意思是:如果特征向量是向量则gamma值取l,否则gamma值为特征向量个数的倒数。

在利用样本数据建立模型之后,我们便可以利用模型来进行相应的预测和判别。基于由svm()函数建立的模型来进行预测时,可以选用函数predict()来完成相应工作。在使用该函数时,应该首先确认将要用于预测的样本数据,并将样本数据的特征变量整合后放入同一个矩阵。来看下面这段示例代码。

通常在进行预测之后,还需要检查模型预测的准确情况,这时便需要使用函数table()来对预测结果和真实结果做出对比展示。从上述代码的输出中,可以看到在模型预测时,模型将所有属于setosa类型的鸢尾花全部预测正确;模型将属于versicolor类型的鸢尾花中有48朵预测正确,但将另外两朵错误地预测为virginica类型;同样,模型将属于virginica类型的鸢尾花中的48朵预测正确,但也将另外两朵错误地预测为versicolor类型。
函数predict()中的一个可选参数是decision.values,我们在此也对该参数的使用做简要讨论。默认情况下,该参数的缺省值为FALSE。若将其置为TRUE,那么函数的返回向量中将包含有一个名为“decision.values”的属性,该属性是一个n*c的矩阵。这里,n是被预测的数据量, c是二分类器的决策值。注意,因为我们使用支持向量机对样本数据进行分类,分类结果可能是有k个类别。那么这k个类别中任意两类之间都会有一个二分类器。所以,我们可以推算出总共的二分类器数量是k(k-1)/2。决策值矩阵中的列名就是二分类的标签。来看下面这段示例代码。

由于我们要处理的是一个分类问题。所以分类决策最终是经由一个sign(?)函数来完成的。从上面的输出中可以看到,对于样本数据4而言,标签setosa/versicolor对应的值大于0,因此属于setosa类别;标签setosa/virginica对应的值同样大于0,以此判定也属于setosa;在二分类器versicolor/virginica中对应的决策值大于0,判定属于versicolor。所以,最终样本数据4被判定属于setosa。依据同样的罗辑,我们还可以根据决策值的符号来判定样本77和样本78,分别是属于versicolor和virginica类别的。

为了对模型做进一步分析,可以通过可视化手段对模型进行展示,下面给出示例代码。结果如图14-15所示。可见,通过plot()函数对所建立的支持向量机模型进行可视化后,所得到的图像是对模型数据类别的一个总体观察。图中的“+”表示的是支持向量,圆圈表示的是普通样本点。

> plot(cmdscale(dist(iris[,-5])),
+ col = c("orange","blue","green")[as.integer(iris[,5])],
+ pch = c("o","+")[1:150 %in% model3$index + 1])
> legend(1.8, -0.8, c("setosa","versicolor","virgincia"),
+ col = c("orange","blue","green"), lty = 1)

在图14-15中我们可以看到,鸢尾花中的第一种setosa类别同其他两种区别较大,而剩下的versicolor类别和virginica类别却相差很小,甚至存在交叉难以区分。注意,这是在使用了全部四种特征之后仍然难以区分的。这也从另一个角度解释了在模型预测过程中出现的问题,所以模型误将2朵versicolor 类别的花预测成了virginica 类别,而将2朵virginica 类别的花错误地预测成了versicolor 类别,也就是很正常现象了。

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-09 00:44:57

在R中使用支持向量机(SVM)进行数据挖掘(下)的相关文章

在R中使用支持向量机(SVM)进行数据挖掘(上)

在R中,可以使用e1071软件包所提供的各种函数来完成基于支持向量机的数据分析与挖掘任务.请在使用相关函数之前,安装并正确引用e1071包.该包中最重要的一个函数就是用来建立支持向量机模型的svm()函数.我们将结合后面的例子来演示它的用法. 下面这个例子中的数据源于1936年费希尔发表的一篇重要论文.彼时他收集了三种鸢尾花(分别标记为setosa.versicolor和virginica)的花萼和花瓣数据.包括花萼的长度和宽度,以及花瓣的长度和宽度.我们将根据这四个特征来建立支持向量机模型从而

机器学习——支持向量机SVM在R中的实现

支持向量机是一个相对较新和较先进的机器学习技术,最初提出是为了解决二类分类问题,现在被广泛用于解决多类非线性分类问题和回归问题.继续阅读本文,你将学习到支持向量机如何工作,以及如何利用R语言实现支持向量机. 支持向量机如何工作? 简单介绍下支持向量机是做什么的: 假设你的数据点分为两类,支持向量机试图寻找最优的一条线(超平面),使得离这条线最近的点与其他类中的点的距离最大.有些时候,一个类的边界上的点可能越过超平面落在了错误的一边,或者和超平面重合,这种情况下,需要将这些点的权重降低,以减小它们

机器学习与数据挖掘-支持向量机(SVM)(一)

最近在看斯坦福大学的机器学习的公开课,学习了支持向量机,再结合网上各位大神的学习经验总结了自己的一些关于支持向量机知识. 一.什么是支持向量机(SVM)? 1.支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析.支持向量机属于一般化线性分类器,这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器. 2.支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个

【转】R中有关数据挖掘的包

下面列出了可用于数据挖掘的R包和函数的集合.其中一些不是专门为了数据挖掘而开发,但数据挖掘过程中这些包能帮我们不少忙,所以也包含进来. 1.聚类 常用的包: fpc,cluster,pvclust,mclust 基于划分的方法: kmeans, pam, pamk, clara 基于层次的方法: hclust, pvclust, agnes, diana 基于模型的方法: mclust 基于密度的方法: dbscan 基于画图的方法: plotcluster, plot.hclust 基于验证的

Stanford机器学习---第八讲. 支持向量机SVM

本文原始文章见http://blog.csdn.net/abcjennifer/article/details/7849812,本文添加了一些自己的理解 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Sta

支持向量机(SVM)(五)-- SMO算法详解

一.我们先回顾下SVM问题. A.线性可分问题 1.SVM基本原理: SVM使用一种非线性映射,把原训练            数据映射到较高的维.在新的维上,搜索最佳分离超平面,两个类的数据总可以被超平面分开. 2.问题的提出: 3.如何选取最优的划分直线f(x)呢? 4.求解:凸二次规划 建立拉格朗日函数: 求偏导数: B.线性不可分问题 1.核函数 如下图:横轴上端点a和b之间红色部分里的所有点定为正类,两边的黑色部分里的点定为负类. 设: g(x)转化为f(y)=<a,y> g(x)=

第八篇:支持向量机 (SVM)

前言 本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤. 分析总体流程 1. 载入并了解数据集:2. 对数据集进行训练并生成模型:3. 在此模型之上调用测试数据集进行分类测试:4. 查看分类结果:5. 进行各种参数的调试并重复2-4直至分类的结果让人满意为止. 参数调整策略 综合来说,主要有以下四个方面需要调整: 1. 选择合适的核函数:2. 调整误分点容忍度参数cost:3. 调整各核函数的参数:4. 调整各样本的权重. 其中,对于特

机器学习第7周-炼数成金-支持向量机SVM

支持向量机SVM 原创性(非组合)的具有明显直观几何意义的分类算法,具有较高的准确率源于Vapnik和Chervonenkis关于统计学习的早期工作(1971年),第一篇有关论文由Boser.Guyon.Vapnik发表在1992年(参考文档见韩家炜书9.10节)思想直观,但细节异常复杂,内容涉及凸分析算法,核函数,神经网络等高深的领域,几乎可以写成单独的大部头与著.大部分非与业人士会觉得难以理解.某名人评论:SVM是让应用数学家真正得到应用的一种算法 思路 简单情况,线性可分,把问题转化为一个

模式识别之svm()---支持向量机svm 简介1995

转自:http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html 作者:Jasper 出自:http://www.blogjava.net/zhenandaci/ (一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10].支持向量机方法是