[转]深入理解mysqldump原理 --single-transaction --lock-all-tables --master-data

本文转至:http://blog.csdn.net/cug_jiang126com/article/details/49824471

在mysqldump过程中,之前其实一直不是很理解为什么加了--single-transaction就能保证innodb的数据是完全一致的,而myisam引擎无法保证,必须加--lock-all-tables,前段时间抽空详细地查看了整个mysqldump过程。

理解master-data和--dump-slave

--master-data=2表示在dump过程中记录主库的binlog和pos点,并在dump文件中注释掉这一行;

--master-data=1表示在dump过程中记录主库的binlog和pos点,并在dump文件中不注释掉这一行,即恢复时会执行;

--dump-slave=2表示在dump过程中,在从库dump,mysqldump进程也要在从库执行,记录当时主库的binlog和pos点,并在dump文件中注释掉这一行;

--dump-slave=1表示在dump过程中,在从库dump,mysqldump进程也要在从库执行,记录当时主库的binlog和pos点,并在dump文件中不注释掉这一行;

注意:在从库上执行备份时,即--dump-slave=2,这时整个dump过程都是stop io_thread的状态

深入理解--single-transaction:

打开general_log,准备一个数据量较小的db,开启备份,添加--single-transaction和--master-data=2参数,查看general_log,信息如下,每一步添加了我的理解

整个dump过程是同一个连接id 32,这样能保证在设置session级别的变量的时候不影响到其他连接

thread_id: 32
 argument: [email protected] on 
*************************** 14. row ***************************
thread_id: 32
 argument: /*!40100 SET @@SQL_MODE=‘‘ */
*************************** 15. row ***************************
thread_id: 32
 argument: /*!40103 SET TIME_ZONE=‘+00:00‘ */
*************************** 16. row ***************************
thread_id: 32
 argument: FLUSH /*!40101 LOCAL */ TABLES
*************************** 17. row ***************************
thread_id: 32
 argument: FLUSH TABLES WITH READ LOCK
批注:因为开启了--master-data=2,这时就需要flush tables with read lock锁住全库,记录当时的master_log_file和master_log_pos点
*************************** 18. row ***************************
thread_id: 32
 argument: SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ
批注:--single-transaction参数的作用,设置事务的隔离级别为可重复读,即REPEATABLE READ,这样能保证在一个事务中所有相同的查询读取到同样的数据,也就大概保证了在dump期间,如果其他innodb引擎的线程修改了表的数据并提交,对该dump线程的数据并无影响,然而这个还不够,还需要看下一条
*************************** 19. row ***************************
thread_id: 32
 argument: START TRANSACTION /*!40100 WITH CONSISTENT SNAPSHOT */
这时开启一个事务,并且设置WITH CONSISTENT SNAPSHOT为快照级别(如果mysql版本高于某一个版本值,我还不大清楚40100代表什么版本)。想象一下,如果只是可重复读,那么在事务开始时还没dump数据时,这时其他线程修改并提交了数据,那么这时第一次查询得到的结果是其他线程提交后的结果,而WITH CONSISTENT SNAPSHOT能够保证在事务开启的时候,第一次查询的结果就是事务开始时的数据A,即使这时其他线程将其数据修改为B,查的结果依然是A,具体的测试看我下面的测试结果
*************************** 20. row ***************************
thread_id: 32
 argument: SHOW MASTER STATUS
这时候执行这个命令来记录当时的master_log_file和master_log_pos点,注意为什么这个时候记录,而不是再18 row和19 row之间就记录,个人认为应该都是可以的,这里是测试结果,start  transaction并不会产生binlog的移动,而18 row和19 row的动作也在同一个thread id中
mysql> show master status;
+------------------+----------+--------------+------------------+
| File             | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 |     1690 |              |                  |
+------------------+----------+--------------+------------------+
1 row in set (0.00 sec)

mysql> START TRANSACTION /*!40100 WITH CONSISTENT SNAPSHOT */;
Query OK, 0 rows affected (0.00 sec)

mysql> show master status;
+------------------+----------+--------------+------------------+
| File             | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 |     1690 |              |                  |
+------------------+----------+--------------+------------------+
1 row in set (0.00 sec)

*************************** 21. row ***************************
thread_id: 32
 argument: UNLOCK TABLES
等记录完成后,就立即释放了,因为现在已经在一个事务中了,其他线程再修改数据已经无所谓,在本线程中已经是可重复读,这也是这一步必须在19 rows之后的原因,如果20 rows和21 rows都在19 rows之前的话就不行了,因为这时事务还没开启,一旦释放,其他线程立即就可以更改数据,从而无法保证得到事务开启时最准确的pos点。*************************** 22. row ***************************
thread_id: 32
 argument: SELECT LOGFILE_GROUP_NAME, FILE_NAME, TOTAL_EXTENTS, INITIAL_SIZE, ENGINE, EXTRA FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = ‘UNDO LOG‘ AND FILE_NAME IS NOT NULL AND LOGFILE_GROUP_NAME IN (SELECT DISTINCT LOGFILE_GROUP_NAME FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = ‘DATAFILE‘ AND TABLESPACE_NAME IN (SELECT DISTINCT TABLESPACE_NAME FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_SCHEMA=‘mysql‘ AND TABLE_NAME IN (‘user‘))) GROUP BY LOGFILE_GROUP_NAME, FILE_NAME, ENGINE ORDER BY LOGFILE_GROUP_NAME
*************************** 23. row ***************************
thread_id: 32
 argument: SELECT DISTINCT TABLESPACE_NAME, FILE_NAME, LOGFILE_GROUP_NAME, EXTENT_SIZE, INITIAL_SIZE, ENGINE FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = ‘DATAFILE‘ AND TABLESPACE_NAME IN (SELECT DISTINCT TABLESPACE_NAME FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_SCHEMA=‘mysql‘ AND TABLE_NAME IN (‘user‘)) ORDER BY TABLESPACE_NAME, LOGFILE_GROUP_NAME
*************************** 24. row ***************************
thread_id: 32
 argument: mysql
*************************** 25. row ***************************
thread_id: 32
 argument: SHOW TABLES LIKE ‘user‘
*************************** 26. row ***************************
thread_id: 32
 argument: show table status like ‘user‘
dump表以前都需要show一下各自信息,确保表,视图等不损坏,可用,每一步错了mysqldump都会报错并中断,给出对应的错误码,常见的myqldump错误请参考我的另外一篇blog http://blog.csdn.net/cug_jiang126com/article/details/49359699
*************************** 27. row ***************************
thread_id: 32
 argument: SET OPTION SQL_QUOTE_SHOW_CREATE=1
*************************** 28. row ***************************
thread_id: 32
 argument: SET SESSION character_set_results = ‘binary‘
*************************** 29. row ***************************
thread_id: 32
 argument: show create table `user`
*************************** 30. row ***************************
thread_id: 32
 argument: SET SESSION character_set_results = ‘utf8‘
*************************** 31. row ***************************
thread_id: 32
 argument: show fields from `user`
*************************** 32. row ***************************
thread_id: 32
 argument: SELECT /*!40001 SQL_NO_CACHE */ * FROM `user`
这就是我们show processlist时看到的信息,而数据是怎么通过一条select语句就dump到本地文件里的呢,并且还转成成相应的create和insert语句,这就是mysqldump这个客户端工具的工作了,这里不做讨论
*************************** 33. row ***************************
最后并没有看到commit,因为在整个事务中,其实并没有修改任何数据,只是为了保证可重复读得到备份时间点一致性的快照,dump完成后提交不提交应该无所谓了。

myisam引擎为什么无法保证在--single-transaction下得到一致性的备份?

因为它压根就不支持事务,自然就无法实现上述的过程,虽然添加了--single-transaction参数的myisam表处理过程和上面的完全一致,但是因为不支持事务,在整个dump过程中无法保证可重复读,无法得到一致性的备份。而innodb在备份过程中,虽然其他线程也在写数据,但是dump出来的数据能保证是备份开始时那个binlog pos的数据。

myisam引擎要保证得到一致性的数据的话,他是如何实现的呢?

它是通过添加--lock-all-tables,这样在flush tables with read lock后,直到整个dump过程结束,断开线程后才会unlock tables释放锁(没必要主动发unlock tables指令),整个dump过程其他线程不可写,从而保证数据的一致性

如果我一定要在mysiam引擎中也添加--single-transaction参数,再用这个备份去创建从库或恢复到指定时间点,会有什么样的影响?

我个人的理解是如果整个dump过程中只有简单的insert操作,是没有关系的,期间肯定会有很多的主键重复错误,直接跳过或忽略就好了。如果是update操作,那就要出问题了,分几种情况考虑

1) 如果是基于时间点的恢复,假设整个dump过程有update a  set id=5 where id=4之类的操作,相当于重复执行两次该操作,应该问题不大
2) 如果是创建从库,遇到上面的sql从库会报错,找不到该记录,这时跳过就好
3)不管是恢复还是创建从库,如果dump过程中有update a set id=id+5 之类的操作,那就有问题,重复执行两次,数据全变了。

深入理解--lock-all-tables

打开general_log,准备一个数据量较小的db,开启备份,添加--lock-all-tables(其实也是默认设置)和--master-data=2参数,查看general_log,信息如下,理解--lock-all-tables怎么保证数据一致性

mysql> select thread_id,argument from general_log  where thread_id=185\G
*************************** 1. row ***************************
thread_id: 185
 argument: [email protected] on 
*************************** 2. row ***************************
thread_id: 185
 argument: /*!40100 SET @@SQL_MODE=‘‘ */
*************************** 3. row ***************************
thread_id: 185
 argument: /*!40103 SET TIME_ZONE=‘+00:00‘ */
*************************** 4. row ***************************
thread_id: 185
 argument: FLUSH /*!40101 LOCAL */ TABLES
*************************** 5. row ***************************
thread_id: 185
 argument: FLUSH TABLES WITH READ LOCK
这里flush tables with read lock之后就不会主动unlock tables,保证整个dump过程整个db数据不可更改,也没有事务的概念了
*************************** 6. row ***************************
thread_id: 185
 argument: SHOW MASTER STATUS
同样记录主库的位置
*************************** 7. row ***************************
thread_id: 185
 argument: SELECT LOGFILE_GROUP_NAME, FILE_NAME, TOTAL_EXTENTS, INITIAL_SIZE, ENGINE, EXTRA FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = ‘UNDO LOG‘ AND FILE_NAME IS NOT NULL GROUP BY LOGFILE_GROUP_NAME, FILE_NAME, ENGINE ORDER BY LOGFILE_GROUP_NAME
*************************** 8. row ***************************
thread_id: 185
 argument: SELECT DISTINCT TABLESPACE_NAME, FILE_NAME, LOGFILE_GROUP_NAME, EXTENT_SIZE, INITIAL_SIZE, ENGINE FROM INFORMATION_SCHEMA.FILES WHERE FILE_TYPE = ‘DATAFILE‘ ORDER BY TABLESPACE_NAME, LOGFILE_GROUP_NAME
*************************** 9. row ***************************
thread_id: 185
 argument: SHOW DATABASES
*************************** 10. row ***************************
thread_id: 185
 argument: jjj
*************************** 11. row ***************************
thread_id: 185
 argument: SHOW CREATE DATABASE IF NOT EXISTS `jjj`

测试可重复读和快照读(WITH CONSISTENT SNAPSHOT )

准备工作3.1(测试可重读)

session 1:
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
|    2 |
|    3 |
|    4 |
+------+
mysql> SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Query OK, 0 rows affected (0.00 sec)
设置事务隔离级别为可重复读

mysql> START TRANSACTION ;
Query OK, 0 rows affected (0.00 sec)
我们先不开快照读观察现象

session 2:
mysql> insert into xx values (5);
Query OK, 1 row affected (0.00 sec)

session 1:
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
|    2 |
|    3 |
|    4 |
|    5 |
+------+
5 rows in set (0.00 sec)
批注:这时因为没有设置快照读,所以当session 2有数据更新时,可查到该数据,接

下来我们继续在session 2 插入数据
session 2:
mysql> insert into xx values (6);
Query OK, 1 row affected (0.00 sec)

这时再观察session 1的数据
session 1
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
|    2 |
|    3 |
|    4 |
|    5 |
+------+
5 rows in set (0.00 sec)
查询发现还是只有5条,表示可重复实现了。

准备工作3.2(测试快照读)

session 1
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
+------+
1 row in set (0.00 sec)
mysql> SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Query OK, 0 rows affected (0.00 sec)
mysql> START TRANSACTION /*!40100 WITH CONSISTENT SNAPSHOT */;
Query OK, 0 rows affected (0.00 sec)

这时我们在session 2插入数据
session 2:
mysql> insert into xx values (2);
Query OK, 1 row affected (0.00 sec)

这时我们再观察session 1的结果
session 1:
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
+------+
1 row in set (0.00 sec)
发现还是只有一条数据,证明实现了快照读
mysql> commit;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from xx;
+------+
| id   |
+------+
|    1 |
|    2 |
+------+
2 rows in set (0.00 sec)
事务1 提交后方可看见第二条记录

时间: 2024-08-02 20:01:46

[转]深入理解mysqldump原理 --single-transaction --lock-all-tables --master-data的相关文章

《深入理解mybatis原理》 MyBatis事务管理机制

MyBatis作为Java语言的数据库框架,对数据库的事务管理是其非常重要的一个方面.本文将讲述MyBatis的事务管理的实现机制.首先介绍MyBatis的事务Transaction的接口设计以及其不同实现JdbcTransaction 和 ManagedTransaction:接着,从MyBatis的XML配置文件入手,讲解MyBatis事务工厂的创建和维护,进而阐述了MyBatis事务的创建和使用:最后分析JdbcTransaction和ManagedTransaction的实现和二者的不同

《深入理解mybatis原理》 MyBatis的一级缓存实现详解 及使用注意事项

0.写在前面 MyBatis是一个简单,小巧但功能非常强大的ORM开源框架,它的功能强大也体现在它的缓存机制上.MyBatis提供了一级缓存.二级缓存 这两个缓存机制,能够很好地处理和维护缓存,以提高系统的性能.本文的目的则是向读者详细介绍MyBatis的一级缓存,深入源码,解析MyBatis一级缓存的实现原理,并且针对一级缓存的特点提出了在实际使用过程中应该注意的事项. 读完本文,你将会学到: 1.什么是一级缓存?为什么使用一级缓存? 2.MyBatis的一级缓存是怎样组织的?(即SqlSes

九爷带你了解 深入理解 Memcache 原理

深入理解Memcache原理 1.为什么要使用memcache 由于网站的高并发读写需求,传统的关系型数据库开始出现瓶颈,例如: 1)对数据库的高并发读写: 关系型数据库本身就是个庞然大物,处理过程非常耗时(如解析SQL语句,事务处理等).如果对关系型数据库进行高并发读写(每秒上万次的访问),那么它是无法承受的. 2)对海量数据的处理: 对于大型的SNS网站,每天有上千万次的苏剧产生(如twitter, 新浪微博).对于关系型数据库,如果在一个有上亿条数据的数据表种查找某条记录,效率将非常低.

《深入理解mybatis原理》 Mybatis数据源与连接池

对于ORM框架而言,数据源的组织是一个非常重要的一部分,这直接影响到框架的性能问题.本文将通过对MyBatis框架的数据源结构进行详尽的分析,并且深入解析MyBatis的连接池. 本文首先会讲述MyBatis的数据源的分类,然后会介绍数据源是如何加载和使用的.紧接着将分类介绍UNPOOLED.POOLED和JNDI类型的数据源组织:期间我们会重点讲解POOLED类型的数据源和其实现的连接池原理. 以下是本章的组织结构: 一.MyBatis数据源DataSource分类 二.数据源DataSour

用代码截图去理解MVC原理

[概述] 看了蒋金楠先生的<Asp.Net Mvc框架揭密>,这本书详细地讲解了mvc的原理,很深奥也很复杂,看了几遍才将就明白了一点.他在第一章用了一个他自己写的mvc框架作为例子,代码看着有点多,所以为了帮助理解,我想用截图的方式一步一步地描述mvc的流程,本人能力有限,写的不好,还望大家包涵.如果蒋老师看到这篇文章,也希望能对我理解错误的地方进行指正. 一.先在web.config中注册自定义的HttpModule 二.输入网址 三.添加默认的路由规则 四.注册PostResolveRe

深入理解FFM原理与实践

原文:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入理解FFM原理与实践 del2z, 大龙 ·2016-03-03 09:00 FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过程中,探索并使用了FM和FFM模型进行CTR和CVR

《深入理解mybatis原理》 MyBatis的二级缓存的设计原理

MyBatis的二级缓存是Application级别的缓存,它可以提高对数据库查询的效率,以提高应用的性能.本文将全面分析MyBatis的二级缓存的设计原理. 1.MyBatis的缓存机制整体设计以及二级缓存的工作模式 如上图所示,当开一个会话时,一个SqlSession对象会使用一个Executor对象来完成会话操作,MyBatis的二级缓存机制的关键就是对这个Executor对象做文章.如果用户配置了"cacheEnabled=true",那么MyBatis在为SqlSession

《深入理解mybatis原理》 MyBatis缓存机制的设计与实现

本文主要讲解MyBatis非常棒的缓存机制的设计原理,给读者们介绍一下MyBatis的缓存机制的轮廓,然后会分别针对缓存机制中的方方面面展开讨论. MyBatis将数据缓存设计成两级结构,分为一级缓存.二级缓存: 一级缓存是Session会话级别的缓存,位于表示一次数据库会话的SqlSession对象之中,又被称之为本地缓存.一级缓存是MyBatis内部实现的一个特性,用户不能配置,默认情况下自动支持的缓存,用户没有定制它的权利(不过这也不是绝对的,可以通过开发插件对它进行修改): 二级缓存是A

《深入理解mybatis原理》 MyBatis的架构设计以及实例分析

MyBatis是目前非常流行的ORM框架,它的功能很强大,然而其实现却比较简单.优雅.本文主要讲述MyBatis的架构设计思路,并且讨论MyBatis的几个核心部件,然后结合一个select查询实例,深入代码,来探究MyBatis的实现. 一.MyBatis的框架设计        注:上图很大程度上参考了iteye 上的chenjc_it所写的博文原理分析之二:框架整体设计 中的MyBatis架构体图,chenjc_it总结的非常好,赞一个! 1.接口层---和数据库交互的方式 MyBatis