projecteuler(欧拉几何)问题的归档。

练习自己的code能力,完成projecteuler的题目,做一个归档记录。

第1题:

If we list all the natural numbers below 10 that are multiples of 3
or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

找出1000以下,可以整除3或者5的数,并计算出它们的和。

def Multiples_of_3_and_5(num):
    sum = 0
    for n in xrange(num):
        if not n%3 or not n%5:
            sum+=n
    return sum

if __name__ == "__main__":
    print Multiples_of_3_and_5(1000)
时间: 2024-10-06 01:22:06

projecteuler(欧拉几何)问题的归档。的相关文章

projecteuler(欧拉几何)问题的一些归档。

练习自己的code能力,完成projecteuler的题目,做一个归档记录. 第1题: If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. 找出1000以下,可以整除3或者5的数,

LA 3263 好看的一笔画 欧拉几何+计算几何模板

题意:训练指南260 #include <cstdio> #include <cstring> #include <algorithm> #include <iostream> #include <cmath> using namespace std; struct Point { double x, y; Point(double x = 0, double y = 0) : x(x) , y(y) { } }; typedef Point V

Euler-Maruyama discretization(&quot;欧拉-丸山&quot;数值解法)

欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分的最基本的一类显型方法(Explicit method). [编辑] 什么是欧拉法 欧拉法是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法.--流场法 它不直接追究质点的运动过程,而是以充满运动液体质点的空间--流场为对象.研究各时刻质点在流场中的变化规律.将个别流体质点运动过

刚体质量分布与牛顿-欧拉方程

惯性矩.惯性积.转动惯量.惯性张量 惯性矩是一个几何量,通常被用作描述截面抵抗弯曲的性质.惯性矩的国际单位为(m4).即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念. 面积元素dA与其至z轴或y轴距离平方的乘积y2dA或z2dA,分别称为该面积元素对于z轴或y轴的惯性矩或截面二次轴矩.惯性矩的数值恒大于零.对Z轴的惯性矩:$I_z=\int_A y^2 dA $,对Y轴的惯性矩:$I_y=\int_A z^2 dA $ 惯性积:质量惯性积是刚体动力学中一个重要的质量

通过欧拉计划学Rust(第1~6题)

最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,看来想准确理解MOVE的机制,还需要对Rust有深刻的理解,所以开始了Rust的快速入门学习. 看了一下网上有关Rust的介绍,都说它的学习曲线相当陡峭,曾一度被其吓着,后来发现Rust借鉴了Haskell等函数式编程语言的优点,而我以前专门学习过Haskell,经过一段时间的入门学习,我现在已经喜欢上这门神奇的语言. 入门资料我用官方的<The Rust Programming Language>,非常权威,配合着<

用欧拉计划学Rust语言(第17~21题)

最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,所以先补一下Rust的基础知识.学习了一段时间,发现Rust的学习曲线非常陡峭,不过仍有快速入门的办法. 学习任何一项技能最怕没有反馈,尤其是学英语.学编程的时候,一定要"用",学习编程时有一个非常有用的网站,它就是"欧拉计划",网址: https://projecteuler.net 这个网站提供了几百道由易到难的数学问题,你可以用任何办法去解决它,当然主要还得靠编程,编程语言不限,论坛里已经有

刷完欧拉计划中难度系数为5%的所有63道题,我学会了Rust中的哪些知识点?

我为什么学Rust? 2019年6月18日,Facebook发布了数字货币Libra的技术白皮书,我也第一时间体验了一下它的智能合约编程语言MOVE,发现这个MOVE是用Rust编写的,看来想准确理解MOVE的机制,还需要对Rust有深刻的理解,所以又开始了Rust的快速入门学习. 欧拉计划 看了一下网上有关Rust的介绍,都说它的学习曲线相当陡峭,曾一度被其吓着,后来发现Rust借鉴了Haskell等函数式编程语言的优点,而我以前专门学习过Haskell,经过一段时间的入门学习,我现在已经喜欢

通过欧拉计划学Rust编程(第54题)

由于研究Libra等数字货币编程技术的需要,学习了一段时间的Rust编程,一不小心刷题上瘾. 刷完欧拉计划中的63道基础题,能学会Rust编程吗? "欧拉计划"的网址: https://projecteuler.net 英文如果不过关,可以到中文翻译的网站: http://pe-cn.github.io/ 这个网站提供了几百道由易到难的数学问题,你可以用任何办法去解决它,当然主要还得靠编程,编程语言不限,论坛里已经有Java.C#.Python.Lisp.Haskell等各种解法,当然

欧拉函数

void Euler_Sieve_Method(int * euler, int n) { euler[1] = 1; for (int i = 2; i < n; i++) { euler[i] = i; } for (int i = 2; i < n; i++) { if (euler[i] == i) { for (int j = i; j < n; j += i) { euler[j] = euler[j] / i * (i - 1); } } } } void Euler_Si