Description
A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however,
as a regular octagon also has this property.
So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x
and y coordinates.
Input
The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points to follow. Each of the next n lines specify the x and y coordinates (two integers) of each point. You may assume that the
points are distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.
Output
For each test case, print on a line the number of squares one can form from the given stars.
Sample Input
4 1 0 0 1 1 1 0 0 9 0 0 1 0 2 0 0 2 1 2 2 2 0 1 1 1 2 1 4 -2 5 3 7 0 0 5 2 0
Sample Output
1 6 1
枚举两个相邻的点,求出另外两点,再看这两个点是否存在
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; #define up(i,x,y) for(i=x;i<=y;i++) #define down(i,x,y) for(i=x;i<=y;i++) #define mem(a,b) memset(a,b,sizeof(a)) #define w(a) while(a) const int mod=20007; int n,next[20007],head[20007],m,ans; struct node { int x,y; } a[2222]; int cmp(node a,node b) { if(a.x==b.x) return a.y<b.y; return a.x<b.x; } void insert(int i) { int key=(a[i].x*a[i].x+a[i].y*a[i].y)%mod; next[m]=head[key]; a[m].x=a[i].x; a[m].y=a[i].y; head[key]=m++; } int find(int x,int y) { int key=(x*x+y*y)%mod; for(int i=head[key];i!=-1;i=next[i]) if(a[i].x==x&&a[i].y==y) return i; return -1; } int main() { int i,j; w((scanf("%d",&n),n)) { mem(head,-1); mem(next,0); m=1005; ans=0; up(i,0,n-1) { scanf("%d%d",&a[i].x,&a[i].y); insert(i); } sort(a,a+n,cmp); up(i,0,n-1) { up(j,i+1,n-1) { int x1,y1,x2,y2; x1=a[i].x-a[j].y+a[i].y; y1=a[i].y+a[j].x-a[i].x; if(find(x1,y1)==-1) continue; x2=a[j].x-a[j].y+a[i].y; y2=a[j].y+a[j].x-a[i].x; if(find(x2,y2)==-1) continue; ans++; } } printf("%d\n",ans/2); } return 0; }
POJ2002:Squares