【数学】CSU 1810 Reverse (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接:

  http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1810

题目大意:

  一个长度为N的十进制数,R(i,j)表示将第i位到第j位翻转过来后的数字,求mod 109+7

题目思路:

  【数学】

  这题换一种思路,看每个数字能够对答案的贡献情况。(可以手推01,10,001,010,100.....,也可以像我一样写个暴力打个10以内的表看看规律)

  现在先考虑位置为i的数字为1的情况(最后乘上这个数字就行)。可以发现贡献是对称的(第i位的1和第(n-i+1)的1其实换到其他位置上的次数是一样的,所以只用考虑i<=n/2的情况)

  第i位的1留在i位的情况有三种,i左边的区间交换,i右边的区间交换,以i为中心的区间交换。这些交换次数都可以通过O(1)得到。

  而i能交换到其他位置的答案也很好推,交换到第一位只有区间[1,i],交换到第二位有区间[1,i+1],[2,i],第三位.....

  可以发现交换到前i个的次数是1,2,...i-1,i,i,...,i,i,i-1,...,2,1(后一半和前一半是对称的)(从1到i,i持平,从i回到1)

  而前面和后面的递增序列对最终答案的影响可以通过预处理计算出(后面是:1+2*10+3*100...前面类似,记得带上10的幂次),而中间的持平也可以通过前缀和求出(10的幂次区间和*i)

  所以这题就可以做了。枚举每一位i,将它对答案的贡献按照上面的累加起来。

 1 //
 2 //by coolxxx
 3 //#include<bits/stdc++.h>
 4 #include<iostream>
 5 #include<algorithm>
 6 #include<string>
 7 #include<iomanip>
 8 #include<map>
 9 #include<stack>
10 #include<queue>
11 #include<set>
12 #include<bitset>
13 #include<memory.h>
14 #include<time.h>
15 #include<stdio.h>
16 #include<stdlib.h>
17 #include<string.h>
18 //#include<stdbool.h>
19 #include<math.h>
20 #define min(a,b) ((a)<(b)?(a):(b))
21 #define max(a,b) ((a)>(b)?(a):(b))
22 #define abs(a) ((a)>0?(a):(-(a)))
23 #define lowbit(a) (a&(-a))
24 #define sqr(a) ((a)*(a))
25 #define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b))
26 #define mem(a,b) memset(a,b,sizeof(a))
27 #define eps (1e-8)
28 #define J 10000
29 #define mod 1000000007
30 #define MAX 0x7f7f7f7f
31 #define PI 3.14159265358979323
32 #define N 100004
33 using namespace std;
34 typedef long long LL;
35 int cas,cass;
36 int n,m,lll,ans;
37 LL aans;
38 LL e[N],sum[N],l[N],r[N];
39 LL a;
40 char s[N];
41 int main()
42 {
43     #ifndef ONLINE_JUDGE
44 //    freopen("1.txt","r",stdin);
45 //    freopen("2.txt","w",stdout);
46     #endif
47     int i,j,k;
48     LL x,y;
49 //    for(scanf("%d",&cass);cass;cass--)
50 //    for(scanf("%d",&cas),cass=1;cass<=cas;cass++)
51 //    while(~scanf("%s",s))
52     while(~scanf("%d",&n))
53     {
54         aans=0;
55         scanf("%s",s);
56         n=strlen(s);
57         e[n]=1;e[n+1]=0;
58         for(i=n-1;i;i--)e[i]=(e[i+1]*10)%mod;
59         r[n]=1;r[n+1]=0;
60         for(i=n-1;i+i>=n;i--)r[i]=(r[i+1]+e[i]*(n-i+1))%mod;
61         l[1]=e[1];l[0]=0;
62         for(i=2;i+i<=n+2;i++)l[i]=(l[i-1]+e[i]*i)%mod;
63         sum[1]=e[1];
64         for(i=2;i<=n;i++)sum[i]=sum[i-1]+e[i];
65
66         for(i=1;i<=n;i++)
67         {
68             a=s[i-1]-‘0‘;
69             if(a==0)continue;
70             x=i;y=n-i+1;
71             if(x>y)swap(x,y);
72             aans=(aans+a*l[min(x,y)-1])%mod;
73             aans=(aans+a*r[max(x,y)+1])%mod;
74             aans=(aans+(a*x*(sum[y]-sum[x-1]))%mod)%mod;
75             aans=(aans+(e[i]*a)%mod*(x*(x-1)/2+y*(y-1)/2)%mod)%mod;
76         }
77         printf("%lld\n",aans);
78     }
79     return 0;
80 }
81 /*
82 //
83
84 //
85 */

时间: 2024-10-20 06:54:10

【数学】CSU 1810 Reverse (2016湖南省第十二届大学生计算机程序设计竞赛)的相关文章

【最短路】【STL】CSU 1808 地铁 (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1808 题目大意: N个点M条无向边(N,M<=105),每条边属于某一条地铁Ci(Ci<=109),每条边有一个耗时,如果乘Ci号线地铁到达一个节点换乘Cj号线地铁离开,还需要花费|Ci-Cj|时间. 求1到n的最小花费时间. 题目思路: [最短路][STL] d[u][Ci]表示从1到u,最后一条地铁是Ci号线的最小耗时.按照边做,每条边枚举上一个是从哪一条地铁坐过来的,更新答案

【模拟】【数学】CSU 1803 2016 (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1803 题目大意: 给定n,m(n,m<=109)1<=i<=n,1<=j<=m,求i*j%2016=0的方案数. 题目思路: [模拟][数学] 按照%2016的余数分类.每增加一个2016就又多一种方案.统计是2016的几倍,根据余数分类.最后枚举i,j的余数即可求解. 1 // 2 //by coolxxx 3 //#include<bits/stdc++

【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105),每个点有两个值ai,bi(ai,bi<=109),count(i,j)表示从i走到j的方案数. 求mod 109+7的值. 题目思路: [拓扑][宽搜] 首先将式子拆开,每个点I走到点J的d[j]一次就加上一次ai,这样一个点被i走到的几次就加上几次ai,相当于count(i,j)*ai,最终只要求

【模拟】CSU 1807 最长上升子序列~ (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1807 题目大意: 给你一个长度为N(N<=105)的数列,数列中的0可以被其他数字替换,最终形成一个1~N的排列,求这个排列的最长上升子序列长度为N-1的方案数. 题目思路: [模拟] 这道题需要分类讨论. 首先可以肯定,一个长度为n的序列最长上升子序列长度为n-1(最长下降子序列长度为2),那么这个序列的样子是1~n从小到大排列后其中一个数字挪到其余数字中间(错位) 一个长度为L的

2016年湖南省第十二届大学生计算机程序设计竞赛---Parenthesis(线段树求区间最值)

原题链接 http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1809 Description Bobo has a balanced parenthesis sequence P=p1 p2…pn of length n and q questions. The i-th question is whether P remains balanced after pai and pbi  swapped. Note that questions ar

CSU 1803 2016(同余公式)2016年湖南省第十二届大学生计算机程序设计竞赛

题意给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量:1. 1 ≤ a ≤ n, 1 ≤ b ≤ m;2. a×b 是 2016 的倍数. 样例输入32 632016 20161000000000 1000000000 样例输出1305767523146895502644 思路由同余公式可得a * b % 2016 = (a % 2016) * (b % 2016) % 2016所以如果 x*y 是2016的倍数的话,那么(2016*k + x)*y也是那么只需要统计1-n

湖南省第十二届大学生计算机程序设计竞赛 problem A 2016

如果 a * b % 2016 == 0 如果a = 1 ,且 a * b % 2016 == 0 考虑一下a = 2017的时候 2017 * b = (2016 + 1) * b % 2016 == 0必定成立 那么就是说1中搭配成的b,2017一样能搭配. 同样:4033 * b = (2016 + 2016 + 1) * b % 2016 == 0必定成立 所以,我可以枚举[1,2016]中[1,2016]中,i * j % 2016 == 0的对数,然后乘上对应的[1,n]中有i这个数

2016年湖南省第十二届大学生计算机程序设计竞赛Problem A 2016 找规律归类

Problem A: 2016 Time Limit: 5 Sec  Memory Limit: 128 MB Description 给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量: 1. 1≤a≤n,1≤b≤m; 2. a×b 是 2016 的倍数. Input 输入包含不超过 30 组数据. 每组数据包含两个整数 n,m (1≤n,m≤109). Output 对于每组数据,输出一个整数表示满足条件的数量. Sample Input 32 63 2016 2016

湖南省第十二届大学生计算机程序设计竞赛 A 2016

1803: 2016 Description 给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量: 1. 1≤a≤n,1≤b≤m; 2. a×b 是 2016 的倍数. Input 输入包含不超过 30 组数据. 每组数据包含两个整数 n,m (1≤n,m≤109). Output 对于每组数据,输出一个整数表示满足条件的数量. Sample Input 32 63 2016 2016 1000000000 1000000000 Sample Output 1 30576 7