随机森林——Random Forests

[基础算法] Random Forests

2011 年 8 月 9 日

Random Forest(s),随机森林,又叫Random Trees[2][3],是一种由多棵决策树组合而成的联合预测模型,天然可以作为快速且有效的多类分类模型。如下图所示,RF中的每一棵决策树由众多split和node组成:split通过输入的test取值指引输出的走向(左或右);node为叶节点,决定单棵决策树的最终输出,在分类问题中为类属的概率分布或最大概率类属,在回归问题中为函数取值。整个RT的输出由众多决策树共同决定,argmax或者avg。

Node Test
node test通常很简单,但很多简单的拧在一起就变得无比强大,联合预测模型就是这样的东西。node test是因应用而异的。比如[1]的应用是基于深度图的人体部位识别,使用的node test是基于像素x的深度比较测试:


简单的说,就是比较像素x在uv位移上的像素点的深度差是否大于某一阈值。uv位移除以x深度值是为了让深度差与x本身的深度无关,与人体离相机的距离无关。这种node test乍一看是没有意义的,事实上也是没多少意义的,单个test的分类结果可能也只是比随机分类好那么一丁点。但就像Haar特征这种极弱的特征一样,起作用的关键在于后续的Boosting或Bagging——有效的联合可以联合的力量。

Training
RF属于Bagging类模型,因此大体训练过程和Bagging类似,关键在于样本的随机选取避免模型的overfitting问题。RF中的每棵决策树是分开训练的,彼此之间并无关联。对于每棵决策树,训练之前形成一个样本子集,在这个子集中有些样本可能出现多次,而另一些可能一次都没出现。接下去,就是循序决策树训练算法的,针对这个样本子集的单棵决策树训练。
单棵决策树的生成大致遵循以下过程:
1)随机生成样本子集;
2)分裂当前节点为左右节点,比较所有可选分裂,选取最优者;
3)重复2)直至达到最大节点深度,或当前节点分类精度达到要求。
这一过程是贪婪的。
当然对于不同的应用场合,训练过程中,会有细节上的差别,比如样本子集的生成过程、以及最优分割的定义。
在[1]中,决策树的真实样本其实是图片中的像素x,变量值则是上文提到的node test。但是,对于一张固定大小的图片而言可取的像素x是可数大量的,可取的位移(uv)和深度差阈值几乎是不可数无限的。因此,[1]在训练单棵决策树前,要做的样本子集随机其实涉及到像素x集合的随机生成、位移(uv)和深度差阈值组合的随机生成,最后还有训练深度图集合本身的随机生成。
最优分裂通常定义为使信息增量最大的分类,如[1]中的定义:

H指熵,通过分裂子集的部位标签分布计算。



Reference:
[1] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-Time Human Pose Recognition in Parts from a Single Depth Image. In CVPR 2011.
[2] L. Breiman. Random forests. Mach. Learning, 45(1):5–32, 2001.
[3] T. Hastie, R. Tibshirani, J. H. Friedman. The Elements of Statistical Learning. ISBN-13 978-0387952840, 2003, Springer.
[4] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition. In Proc. CVPR, pages 2:775–781, 2005

转自http://lincccc.com/?p=47

from: http://blog.csdn.net/yangtrees/article/details/7488937

时间: 2024-10-31 22:35:37

随机森林——Random Forests的相关文章

第九篇:随机森林(Random Forest)

前言 随机森林非常像<机器学习实践>里面提到过的那个AdaBoost算法,但区别在于它没有迭代,还有就是森林里的树长度不限制. 因为它是没有迭代过程的,不像AdaBoost那样需要迭代,不断更新每个样本以及子分类器的权重.因此模型相对简单点,不容易出现过拟合. 下面先来讲讲它的具体框架流程. 框架流程 随机森林可以理解为Cart树森林,它是由多个Cart树分类器构成的集成学习模式.其中每个Cart树可以理解为一个议员,它从样本集里面随机有放回的抽取一部分进行训练,这样,多个树分类器就构成了一个

【机器学习】随机森林 Random Forest 得到模型后,评估参数重要性

在得出random forest 模型后,评估参数重要性 importance() 示例如下 特征重要性评价标准 %IncMSE 是 increase in MSE.就是对每一个变量 比如 X1 随机赋值, 如果 X1重要的话, 预测的误差会增大,所以 误差的增加就等同于准确性的减少,所以MeanDecreaseAccuracy 是一个概念的. IncNodePurity 也是一样, 如果是回归的话, node purity 其实就是 RSS(残差平方和residual sum of squar

机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如

转载:scikit-learn随机森林调参小结

在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC

Bagging与随机森林算法原理小结

在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,

机器学习中的算法——决策树模型组合之随机森林与GBDT

前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 美国金融银行业的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大大的减少单决策树带来的毛病,有

决策树模型组合之(在线)随机森林与GBDT

前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大 大的减少单决策树带来的毛病,有点类似于三个臭皮匠等于一个诸葛亮的做法,虽然这几

机器学习实战之 第七章 集成方法(随机森林和 AdaBoost)

第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见. 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想. 集成方法: 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法 再学习(boosting): 是基于

决策树模型组合之随机森林与GBDT

本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如说有Boos