python scikit-learn计算tf-idf词语权重

python的scikit-learn包下有计算tf-idf的api,研究了下做个笔记

1 安装scikit-learn包

sudo pip install scikit-learn

2 中文分词采用的jieba分词,安装jieba分词包

sudo pip install jieba

3  关于jieba分词的使用非常简单,参考这里,关键的语句就是(这里简单试水,不追求效果4 )

import jieba.posseg as pseg
words=pseg.cut("对这句话进行分词")
for key in words:
     print key.word,key.flag

输出结果:

对 p

这 r

句 q

话 n

进行 v

分词 n

4 采用scikit-learn包进行tf-idf分词权重计算关键用到了两个类:CountVectorizer和TfidfTransformer,具体参见这里

一个简单的代码如下:

# coding:utf-8
__author__ = "liuxuejiang"
import jieba
import jieba.posseg as pseg
import os
import sys
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer

if __name__ == "__main__":
    corpus=["我 来到 北京 清华大学",#第一类文本切词后的结果,词之间以空格隔开
		"他 来到 了 网易 杭研 大厦",#第二类文本的切词结果
		"小明 硕士 毕业 与 中国 科学院",#第三类文本的切词结果
		"我 爱 北京 天安门"]#第四类文本的切词结果
    vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频
    transformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值
    tfidf=transformer.fit_transform(vectorizer.fit_transform(corpus))#第一个fit_transform是计算tf-idf,第二个fit_transform是将文本转为词频矩阵
    word=vectorizer.get_feature_names()#获取词袋模型中的所有词语
    weight=tfidf.toarray()#将tf-idf矩阵抽取出来,元素a[i][j]表示j词在i类文本中的tf-idf权重
    for i in range(len(weight)):#打印每类文本的tf-idf词语权重,第一个for遍历所有文本,第二个for便利某一类文本下的词语权重
        print u"-------这里输出第",i,u"类文本的词语tf-idf权重------"
        for j in range(len(word)):
            print word[j],weight[i][j]

程序输出:每行格式为:词语  tf-idf权重

-------这里输出第 0 类文本的词语tf-idf权重------           #该类对应的原文本是:"我来到北京清华大学"
中国 0.0
北京 0.52640543361
大厦 0.0
天安门 0.0
小明 0.0
来到 0.52640543361
杭研 0.0
毕业 0.0
清华大学 0.66767854461
硕士 0.0
科学院 0.0
网易 0.0
-------这里输出第 1 类文本的词语tf-idf权重------           #该类对应的原文本是: "他来到了网易杭研大厦"
中国 0.0
北京 0.0
大厦 0.525472749264
天安门 0.0
小明 0.0
来到 0.414288751166
杭研 0.525472749264
毕业 0.0
清华大学 0.0
硕士 0.0
科学院 0.0
网易 0.525472749264
-------这里输出第 2 类文本的词语tf-idf权重------           #该类对应的原文本是: "小明硕士毕业于中国科学院“
中国 0.4472135955
北京 0.0
大厦 0.0
天安门 0.0
小明 0.4472135955
来到 0.0
杭研 0.0
毕业 0.4472135955
清华大学 0.0
硕士 0.4472135955
科学院 0.4472135955
网易 0.0
-------这里输出第 3 类文本的词语tf-idf权重------            #该类对应的原文本是: "我爱北京天安门"
中国 0.0
北京 0.61913029649
大厦 0.0
天安门 0.78528827571
小明 0.0
来到 0.0
杭研 0.0
毕业 0.0
清华大学 0.0
硕士 0.0
科学院 0.0
网易 0.0

注:这里随便举了几个文本,所以tf-idf也没什么实际价值,旨在说明scikit-learn包关于tf-idf计算API的调用

python scikit-learn计算tf-idf词语权重

时间: 2024-08-07 07:27:48

python scikit-learn计算tf-idf词语权重的相关文章

使用sklearn进行中文文本的tf idf计算

Created by yinhongyu at 2018-4-28 email: [email protected] 使用jieba和sklearn实现了tf idf的计算 import jieba import jieba.posseg as pseg from sklearn import feature_extraction from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_e

tf–idf算法解释及其python代码实现(下)

tf–idf算法python代码实现 这是我写的一个tf-idf的核心部分的代码,没有完整实现,当然剩下的事情就非常简单了,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: i

tf–idf算法解释及其python代码实现(上)

tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息检索和文本挖掘中. 一个很自然的想法是在一篇文档中词频越高的词对这篇文档越重要,但同时如果这个词又在非常多的文档中出现的话可能就是很普通的词,没有多少信息,对所在文档贡献不大,例如‘的’这种停用词.所以要综合一个词在所在文档出现次数以及有多少篇文档包含这个词,如果一个词在所在文档出现次数很多同时整个

文本分类学习(三) 特征权重(TF/IDF)和特征提取

上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的向量.这样每个文本在分词之后,就可以根据我们之前得到的词袋,构造成一个向量,词袋中有多少个词,那这个向量就是多少维度的了.然后就把这些向量交给计算机去计算,而不再需要文本啦.而向量中的数字表示的是每个词所代表的权重.代表这个词对文本类型的影响程度. 在这个过程中我们需要解决两个问题:1.如何计算出适

关于使用Filter减少Lucene tf idf打分计算的调研

将query改成filter,lucene中有个QueryWrapperFilter性能比较差,所以基本上都需要自己写filter,包括TermFilter,ExactPhraseFilter,ConjunctionFilter,DisjunctionFilter. 这几天验证下来,还是or改善最明显,4个termfilter,4508个返回结果,在我本机上性能提高1/3.ExactPhraseFilter也有小幅提升(5%-10%). 最令人不解的是and,原来以为跟结果数和子查询数相关,但几

Python之扩展包安装(scikit learn)

scikit learn 是Python下开源的机器学习包.(安装环境:win7.0 32bit和Python2.7) Python安装第三方扩展包较为方便的方法:easy_install + packages name 在官网 https://pypi.python.org/pypi/setuptools/#windows-simplified 下载名字为 的文件. 在命令行窗口运行 ,安装后,可在python2.7文件夹下生成Scripts文件夹.把路径D:\Python27\Scripts

[Elasticsearch] 控制相关度 (四) - 忽略TF/IDF

本章翻译自Elasticsearch官方指南的Controlling Relevance一章. 忽略TF/IDF 有时我们不需要TF/IDF.我们想知道的只是一个特定的单词是否出现在了字段中.比如我们正在搜索度假酒店,希望它拥有的卖点越多越好: WiFi 花园(Garden) 泳池(Pool) 而关于度假酒店的文档类似下面这样: { "description": "A delightful four-bedroomed house with ... " } 可以使用

Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同时存在一个通用的搜索引擎,比如百度,通用搜索引擎希望能够识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器可以理解为一个函数,

Elasticsearch学习之相关度评分TF&IDF

relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法 Term frequency(TF):搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关 Inverse document frequency(IDF):搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的