Motion images compression and restoration based on computer vision

This technique should apply to both normal video (consequtive sequences of pictures of real world) and animations (sequences of images drawn by human or generated by computer)

This technique is supposed to perform better in lossy compression and by default it should use that mode but it does not preclude the option of lossless mode.

Overview

High level system diagram V1

[Motion Pictures] -> [Preprocessing] -> [CV module (cross frames)] -> ( CV restore : Elements/contours/directions/(inferred)object texture/descriptions )
                                                       |                                            ______________|_____________
                                                       |                                           v                            |
                                                       |-------------------------------->   [ Image error analysis module]      |
                                                                                                   |                            |   
                                                                                                   v                            v
                                                                                             ( difference ) -----> [ Sub image/Entropy coding]

时间: 2024-10-13 03:41:58

Motion images compression and restoration based on computer vision的相关文章

Computer Vision Algorithm Implementations

Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image manipulation, matrix manipulation, transforms Torch3Vision (C/C++ code, BSD lic) Basic image processing, matrix manipulation and feature extraction algor

Graph Cut and Its Application in Computer Vision

Graph Cut and Its Application in Computer Vision 原文出处: http://lincccc.blogspot.tw/2011/04/graph-cut-and-its-application-in.html 网络流算法最初用于解决流网络的优化问题,比如水管网络.通信传输和城市的车流等.Graph cut作为其中一类最常见的算法,用于求解流网络的最小割,即寻找一个总容量最小的边集合,去掉这个集合中的所有边将阻断这个网络.图像和视频也能被视作网络(或者

Computer vision:algorithm and application 计算机视觉算法与应用

最近在看Computer vision:algorithm and application计算机视觉算法与应用这本书,感觉对机器视觉学习很好的一本书,下面对书本知识和网上的资源作个总结. 先从后面的附录开始看,其中包括数据集站点,相关机器视觉软件和参考文献,对今后算法学习与实现有用. 下面是学长整理的一些资料,现在搬过来学习学习: 以下是computer vision:algorithm and application计算机视觉算法与应用这本书中附录里的关于计算机视觉的一些测试数据集和源码站点,

Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg

In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 4

Deep Learning for Computer Vision with MATLAB and cuDNN(译文)

翻译水平有限,欢迎阅读原文 一.深度学习 当前,深度学习已经成为一个热门话题.随着深度学习算法和GPU技术的发展,我们已经能够解决许多领域(计算机视觉.自然语言处理和机器人学)曾经认为不可能的事情. 深度学习是建立在传统的深度神经网络之上的.最近几年的热点是大数据集和强大的GPUs的使用.神经网络本质上是一种并行算法,因此多核GPUs的使用能够明显的减少用于训练深度神经网络的时间.以下,我将会讨论如何使用MATLAB以及深度卷积神经网络和GPUs开发一个对象识别系统 二.为什么将深度学习用于计算

计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.

The picture above is funny. But for me it is also one of those examples that make me sad about the outlook for AI and for Computer Vision. What would it take for a computer to understand this image as you or I do? I challenge you to think explicitly

MAEG 5720 Computer Vision in Practice

MAEG 5720 Computer Vision in Practice – Project 1Aim: To familiarize with template tracking and detecting moving object in a video streamIn this project, you will implement a simple ‘translation-only’ Lucas-Kanade tracker to track a local 2Dtemplate

My Reading List - Machine Learning && Computer Vision

本博客汇总了个人在学习过程中所看过的一些论文.代码.资料以及常用的资源与网站,为了便于记录自身的学习过程,将其整理于博客之中. Machine Learning (1) Machine Learning Video Library - Caltech说明:罗列了机器学习的常用算法以及机器学习图谱 (2) Deep Learning - Bengio 说明:Deep Learning三大牛之一Bengio写的一本书 (3) Understanding LSTM Networks 说明:非常棒的LS

Analyzing The Papers Behind Facebook's Computer Vision Approach

Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company called Facebook? Yeah, the one that has 1.6 billion people hooked on their website. Take all of the happy birthday posts, embarrassing pictures of you