机器学习Coursera学习总结

  Coursera上Andrew NG的机器学习实在是太火了,最近有时间花费了20来天的时间(每天3小时左右)终于学习完了全部的课程,总结如下:

  (1)适合入门,讲的比较基础,Andrew讲的很棒;

  (2)里面的习题相对比较容易,不过要认真揣摩每个英语单词,不然容易犯错;

  (3)我是用MATLAB提交的编程作业,由于对MATLAB的命令不熟悉,真的是写起语句来有些困难,接下来准备花费一点时间来学习MATLAB编程。

  (4)纪念自己的第一门Couesera课程!

附录: 自己的部分参考笔记来自:

52nlp Couesera公开课笔记(中文版学习笔记前半部分)

           无知的我CSDN博客(中文版学习笔记后半部分)

     github JimLee(编程作业原码)

时间: 2024-11-06 13:03:45

机器学习Coursera学习总结的相关文章

[机器学习] Coursera笔记 - Support Vector Machines

序言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,包括在线课程或Tutorial的学习笔记,论文资料的阅读笔记,算法代码的调试心得,前沿理论的思考等等,针对不同的内容会开设不同的专栏系列. 机器学习是一个令人激动令人着迷的研究领域,既有美妙的理论公式,又有实用的工程技术,在不断学习和应用机器学习算法的过程中,我愈发的被这个领域所吸引,只恨自己没有早点接触到这个神奇伟大的领域!不过我也觉得自己非常幸运,生活在这个机器学习技术发展如火如荼的时代,并且做着与之相关的工作

机器学习深度学习自然语言处理学习

机器学习/深度学习/自然语言处理学习路线 原文地址:http://www.cnblogs.com/cyruszhu/p/5496913.html 未经允许,请勿用于商业用途!相关请求,请联系作者:[email protected]转载请附上原文链接,谢谢. 1 基础 l  Andrew NG 的 Machine Learning视频. 连接:主页,资料. l  2.2008年Andrew Ng CS229 机器学习 当然基本方法没有太大变化,所以课件PDF可下载是优点. 中文字幕视频@网易公开课

《机器学习》学习笔记(一)

今天看了两集Stanford 的Machine Learning,先说说感受,在看的过程中,脑海里冒出来一个念头:在中国的大学里,教授们都是好像在做研究,而学生们都是好像在上课,到头来不知道学到了什么,我在屏幕的这边都能感受到他们和我们的不一样. 其实对于机器学习,我是真心不懂,也不知道为什么忽然就想学习一下了,然后看了第一集就觉得实在是太牛X了,他们做的那个爬越障碍物的狗和快速避障的小车,都不是我们能搞出来的,说来也奇怪,我们不是也有他们一样的课程体系吗?照理说在大学里能做出来的东西,我们也应

(转载)[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation

[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/article/details/50922854

从机器学习到学习的机器,数据分析算法也需要好管家

(上图为IBM大数据与分析事业部全球研发副总裁Dinesh Nirmal) 今年是莎士比亚逝世四百周年.在莎翁名剧<尤利乌斯·凯撒>中一个占卜师有这样一句没有上下文的预言:"请小心'三月'中", 凯撒听后不知道这句话是何意思,于是说让这个占卜师继续做梦吧.结果在三月十五日,凯撒被密谋暗杀.类似的,今天的预测算法可以告诉你一个预言,但却无法提供合适的上下文,这让人难以做出进一步行动的决策. 另一个关于预测算法的例子是在最新的<复仇者联盟3>中,出现了一个人工智能合

【转载】机器学习——深度学习(Deep Learning)

机器学习——深度学习(Deep Learning) 分类: Machine Learning2012-08-04 09:49 142028人阅读 评论(70) 收藏 举报 algorithmclassificationfeaturesfunctionhierarchy Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得. Key Words:有监督学习与无监督学习

机器学习实战学习笔记(一)

1.k-近邻算法 算法原理: 存在一个样本数据集(训练样本集),并且我们知道样本集中的每个数据与其所属分类的对应关系.输入未知类别的数据后将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似(最近邻)的k组数据.然后将k组数据中出现次数最多的分类,来作为新数据的分类. 算法步骤: 计算已知类别数据集中的每一个点与当前点之前的距离.(相似度度量) 按照距离递增次序排序 选取与当前点距离最小的k个点 确定k个点所在类别的出现频率 返回频率最高的类别作为当前点的分类 py

机器学习&amp;深度学习资料分享

感谢:https://github.com/ty4z2008/Qix/blob/master/dl.md <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber

机器学习&amp;深度学习资料

机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2) <机器学习&&深度学习> 视频课程资源