基础递归 - 斐波那契数列

【题目描述】

求斐波那契数列的第n项。

【算法分析】

这篇博文主要面对新人学习,求dalao不打。

相信主函数那一块大家都会写,声明变量,输入变量,打印结果即可。

所以求值的函数就是我们深究的内容。

这图应该不必解释。

没有结束条件你就死循环了。

斐波那契数列函数的分析。

【参考代码】

#include <iostream>
using namespace std;
int fbnq(int);
int main()
{
    int n;
    cin>>n;
    cout<<fbnq(n)<<endl;
    return 0;
}
int fbnq(int n)
{
    if(n==1) return 1;
    if(n==0) return 0;
    return fbnq(n-1)+fbnq(n-2);
}

  

原文地址:https://www.cnblogs.com/tyqEmptySet/p/9447012.html

时间: 2024-11-09 00:31:40

基础递归 - 斐波那契数列的相关文章

两种方法递归斐波那契数列

__author__ = 'hechangting' #ecoding=utf-8 import itertools #迭代器 class Fib: def __init__(self): self.prev = 0 self.curr = 1 def __iter__(self): return self def __next__(self): value = self.curr self.curr += self.prev self.prev = value return value #生成

递归总结及斐波那契数列的实现

优点:递归给某些编程问题提供了简单的方法 缺点:有缺陷的递归会很快耗尽计算机的资源,递归的程序难以理解和维护 杀毒软件会全盘扫描文件,其中就应用了递归 斐波那契数列的实现如下 #include<stdio.h> int fib(int n) { if(n == 1) return 1; if(n == 2) return 2; if(n > 2) //此行可省略 return fib(n - 1) + fib(n - 2); //返回第三个数 ,有返回值不能用void } int mai

1242 斐波那契数列的第N项

1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <= n <

还在用递归实现斐波那契数列,面试官一定会鄙视你到死

斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368...... 我记得在初学C语言的时候,大学老师经常会讲一些常见的数学问题及递归的使用,其中斐波那契数列就是一定会被拿出来举例的.在后来工作中,面试做面试题的时候,也很大概率会出现编写算法实现斐波那契额数列求值.可以说,在我们编程道路上,编写算法实现斐波那契数列是

用递归和非递归的方法输出斐波那契数列的第n个元素(C语言实现)

费波那契数列(意大利语:Successione di Fibonacci),又译为费波拿契数.斐波那契数列.费氏数列.黄金分割数列. 在数学上,费波那契数列是以递归的方法来定义: {\displaystyle F_{0}=0} {\displaystyle F_{1}=1} {\displaystyle F_{n}=F_{n-1}+F_{n-2}}(n≧2) 用文字来说,就是费波那契数列由0和1开始,之后的费波那契系数就是由之前的两数相加而得出.首几个费波那契系数是: 0, 1, 1, 2, 3

递归与斐波那契数列

一.递归 在函数内部,可以调用其他函数;如果一个函数在内部调用自己,那这个函数就是递归函数. 案例:遍历当前目录下的所有文件 1.递归遍历 1 import os 2 def gci(filepath): 3 #遍历filepath下所有文件,包括子目录 4 files = os.listdir(filepath) 5 for fi in files: 6 fi_d = os.path.join(filepath,fi) 7 if os.path.isdir(fi_d): 8 gci(fi_d)

MIT Python 第四课函数抽象与递归简介 最后三分钟递归的经典案例:斐波那契数列

斐波那契数列Fibonacci Sequence,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 有一对一个月大的一公一母的兔子,再过一个月的时候交配生小兔子,假设它们生的是两只一公一母的小兔子,在下一个月末这两只小兔子也有了后代同样是一公一母,问题是一年后你会有多少只小兔子?[呲牙]第三年的时候就像到了澳大利亚... >>&g

Python递归及斐波那契数列

递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(

求斐波那契数列的第n个数(递归、非递归)

用递归的方式求斐波那契数列的第n个数. 用非递归的方式求斐波那契数列的第n个数. 定义: 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368 特别指出:第0项是0,第1项是第一个1. 这个数列从第2项开始,每一项都等于前两项之和. #include<stdio.h> #include<stdlib.