【比原链】比原启动后去哪里连接别的节点

最开始我对于这个问题一直有个疑惑:区块链是一个分布式的网络,那么一个节点启动后,它怎么知道去×××别的节点从而加入网络呢?

看到代码之后,我才明白,原来在代码中硬编码了一些种子地址,这样在启动的时候,可以先通过种子地址加入网络。虽然整个网络是分布式的,但是最开始还是需要一定的中心化。

预编码内容

对于配置文件config.toml,比原的代码中硬编码了配置文件内容:

config/toml.go#L22-L45

var defaultConfigTmpl = `# This is a TOML config file.
# For more information, see https://github.com/toml-lang/toml
fast_sync = true
db_backend = "leveldb"
api_addr = "0.0.0.0:9888"
`

var mainNetConfigTmpl = `chain_id = "mainnet"
[p2p]
laddr = "tcp://0.0.0.0:46657"
seeds = "45.79.213.28:46657,198.74.61.131:46657,212.111.41.245:46657,47.100.214.154:46657,47.100.109.199:46657,47.100.105.165:46657"
`

var testNetConfigTmpl = `chain_id = "testnet"
[p2p]
laddr = "tcp://0.0.0.0:46656"
seeds = "47.96.42.1:46656,172.104.224.219:46656,45.118.132.164:46656"
`

var soloNetConfigTmpl = `chain_id = "solonet"
[p2p]
laddr = "tcp://0.0.0.0:46658"
seeds = ""
`

可以看出,对于不同的chain_id,预设的种子是不同的。

当然,如果我们自己知道某些节点的地址,也可以在初始化生成config.toml后,手动修改该文件添加进去。

启动syncManager

那么,比原在代码中是使用这些种子地址并连接它们的呢?关键在于,连接的代码位于SyncManager中,所以我们要找到启动syncManager的地方。

首先,当我们使用bytomd node启动后,下面的函数将被调用:

cmd/bytomd/commands/run_node.go#L41

func runNode(cmd *cobra.Command, args []string) error {
    // Create & start node
    n := node.NewNode(config)
    if _, err := n.Start(); err != nil {
        // ...
    }
    // ...
}

这里调用了n.Start,其中的Start方法,来自于Node所嵌入的cmn.BaseService

node/node.go#L39

type Node struct {
    cmn.BaseService
    // ...
}

所以n.Start对应的是下面这个方法:

vendor/github.com/tendermint/tmlibs/common/service.go#L97

func (bs *BaseService) Start() (bool, error) {
    // ...
    err := bs.impl.OnStart()
    // ...
}

在这里,由于bs.impl对应于Node,所以将继续调用Node.OnStart():

node/node.go#L169

func (n *Node) OnStart() error {
    // ...
    n.syncManager.Start()
    // ...
}

可以看到,我们终于走到了调用了syncManager.Start()的地方。

syncManager中的处理

然后就是在syncManager内部的一些处理了。

它主要是除了从config.toml中取得种子节点外,还需要把以前连接过并保存在本地的AddressBook.json中的节点也拿出来连接,这样就算预设的种子节点失败了,也还是有可能连接上网络(部分解决了前面提到的中心化的担忧)。

syncManager.Start()对应于:

netsync/handle.go#L141

func (sm *SyncManager) Start() {
    go sm.netStart()
    // ...
}

其中sm.netStart(),对应于:

netsync/handle.go#L121

func (sm *SyncManager) netStart() error {
    // ...
    // If seeds exist, add them to the address book and dial out
    if sm.config.P2P.Seeds != "" {
        // dial out
        seeds := strings.Split(sm.config.P2P.Seeds, ",")
        if err := sm.DialSeeds(seeds); err != nil {
            return err
        }
    }
    // ...
}

其中的sm.config.P2P.Seeds就对应于config.toml中的seeds。关于这两者是怎么对应起来的,会在后面文章中详解。

紧接着,再通过sm.DialSeeds(seeds)去连接这些seed,这个方法对应的代码位于:

netsync/handle.go#L229

func (sm *SyncManager) DialSeeds(seeds []string) error {
    return sm.sw.DialSeeds(sm.addrBook, seeds)
}

其实是是调用了sm.sw.DialSeeds,而sm.sw是指Switch。这时可以看到,有一个叫addrBook的东西参与了进来,它保存了该结点之前成功连接过的节点地址,我们这里暂不多做讨论。

Switch.DialSeeds对应于:

p2p/switch.go#L311

func (sw *Switch) DialSeeds(addrBook *AddrBook, seeds []string) error {
    // ...
    perm := rand.Perm(len(netAddrs))
    for i := 0; i < len(perm)/2; i++ {
        j := perm[i]
        sw.dialSeed(netAddrs[j])
    }
   // ...
}

这里引入了随机数,是为了将发起连接的顺序打乱,这样可以让每个种子都获得公平的连接机会。

sw.dialSeed(netAddrs[j])对应于:

p2p/switch.go#L342

func (sw *Switch) dialSeed(addr *NetAddress) {
    peer, err := sw.DialPeerWithAddress(addr, false)
    // ...
}

sw.DialPeerWithAddress(addr, false)又对应于:

p2p/switch.go#L351

func (sw *Switch) DialPeerWithAddress(addr *NetAddress, persistent bool) (*Peer, error) {
    // ...
    log.WithField("address", addr).Info("Dialing peer")
    peer, err := newOutboundPeerWithConfig(addr, sw.reactorsByCh, sw.chDescs, sw.StopPeerForError, sw.nodePrivKey, sw.peerConfig)
    // ...
}

其中的persistent参数如果是true的话,表明这个peer比较重要,在某些情况下如果断开连接后,还会尝试重连。如果persistentfalse的,就没有这个待遇。

newOutboundPeerWithConfig对应于:

p2p/peer.go#L69

func newOutboundPeerWithConfig(addr *NetAddress, reactorsByCh map[byte]Reactor, chDescs []*ChannelDescriptor, onPeerError func(*Peer, interface{}), ourNodePrivKey crypto.PrivKeyEd25519, config *PeerConfig) (*Peer, error) {
    conn, err := dial(addr, config)
    // ...
}

继续dial,加入了超时:

p2p/peer.go#L284

func dial(addr *NetAddress, config *PeerConfig) (net.Conn, error) {
    conn, err := addr.DialTimeout(config.DialTimeout * time.Second)
    if err != nil {
        return nil, err
    }
    return conn, nil
}

addr.DialTimeout对应于:

p2p/netaddress.go#L141

func (na *NetAddress) DialTimeout(timeout time.Duration) (net.Conn, error) {
    conn, err := net.DialTimeout("tcp", na.String(), timeout)
    if err != nil {
        return nil, err
    }
    return conn, nil
}

终于到了net包的调用,开始真正去连接这个种子节点了,到这里,我们可以认为这个问题解决了。

原文地址:http://blog.51cto.com/13794581/2125718

时间: 2024-11-10 08:12:53

【比原链】比原启动后去哪里连接别的节点的相关文章

剥开比原看代码02:比原启动后去哪里连接别的节点

作者:freewind 比原项目仓库: Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom 比原启动后去哪里连接别的节点 最开始我对于这个问题一直有个疑惑:区块链是一个分布式的网络,那么一个节点启动后,它怎么知道去哪里找别的节点从而加入网络呢? 看到代码之后,我才明白,原来在代码中硬编码了一些种子地址,这样在启动的时候,可以先通过种子地址加入网络.虽然整个网络是分布式的,但

禁止开机启动后Oracle 无法连接 、 网络适配器错误 处理

禁止开机启动后Oracle 无法连接, 转来:http://blog.sina.com.cn/s/blog_4aeef1220100fmsr.html TNS-12560: TNS: 协议适配器错误 Microsoft Windows [版本 5.2.3790] (C) 版权所有 1985-2003 Microsoft Corp. C:\Documents and Settings\user1>lsnrctl LSNRCTL for 32-bit Windows: Version 9.2.0.7

【比原链】如何连上一个比原节点

作者:freewind 在上一篇我们已经知道了比原是如何监听节点的p2p端口,本篇就要继续在上篇中提到的问题:我们如何成功的连接上比原的节点,并且通过身份验证,以便后续继续交换数据? 在上一篇中,我们的比原节点是以solonet这个chain_id启动的,它监听的是46658端口.我们可以使用telnet连上它: $ telnet localhost 46658 Trying 127.0.0.1... Connected to localhost. Escape character is '^]

【比原链】如何从比原节点拿到区块数据?

作者:freewind在前一篇中,我们已经知道如何连上一个比原节点的p2p端口,并与对方完成身份验证.此时,双方结点已经建立起来了信任,并且连接也不会断开,下一步,两者就可以继续交换数据了. 那么,我首先想到的就是,如何才能让对方把它已有的区块数据全都发给我呢? 这其实可以分为三个问题: 我需要发给它什么样的数据? 它在内部由是如何应答的呢? 我拿到数据之后,应该怎么处理? 由于这一块的逻辑还是比较复杂的,所以在本篇我们先回答第一个问题: 我们要发送什么样的数据请求,才能让比原节点把它持有的区块

【比原链】初始化时生成的配置文件在哪儿

人们常说,"阅读源代码"是学习编程的一种重要方法.作为程序员,我们在平时的学习工作中,都应该阅读过不少源代码.但是对于大多数人来说,阅读的可能更多是一些代码片断.示例,或者在老师.同事的指导下,先对要阅读的项目代码有了整体的了解之后,再进行针对性的阅读. 但是如果我们面对的是一个像比原这样比较庞大的项目,身边又没有人指导,只能靠自己去看,这时应该怎么来阅读呢?也许每个人也都能找到自己的办法,或高效,或低效,或放弃. 我在这次阅读比原源代码的过程中,尝试的是这样一种方法:从外部入手,通过

浅析Facebook LibraBFT与比原链Bystack BBFT共识

如果说什么是区块链的灵魂,那一定是共识机制. 它是区块链的根基.无论公链或是联盟链,共识机制都从基础上限制了区块链的交易处理能力和扩展性. 2019年6月18日,Facebook 发布了自己 Libra 项目的白皮书,引发广泛关注.作为 Facebook 试图创造国际流通数字货币的重要项目,Libra 区块链采用的是 LibraBFT 共识机制,是一个为 Libra 设计的鲁棒的高效的状态复制系统.它基于一种新型的 BFT 共识算法,HotStuff. 就在 Facebook Libra 项目白

图解比原链Tensority算法:如何让POW做到人工智能友好

共识算法说起 区块链系统首先是分布式系统,而一致性是分布式系统的基础问题,要保证系统满足不同程度的一致性,则就要用到共识算法. 现在主流的算法有POW.POS.DPOS等等,比特币采用的POW共识算法运行9年之久,已被证明稳定可靠,然而因为巨大的硬件和能源消耗而饱受诟病,特别是专用矿机,在被淘汰之后就变成了废铁. POS和DPOS为了避免资源的浪费,直接采取抛弃计算的方式,通过持有证明和选举来进行共识,牺牲了一定准入性和去中心化.而比原链从另一个角度来切入和解决POW资源浪费的问题. 比原链共识

比原链设计思考: 扩展性UTXO模型

用户模型是比原链在最初就需要确定的重要数据结构, 团队的选择还是聚焦在两种典型的模型系统中,Account模型和UTXO模型,和其他大多数区块链设计一样, 选择了模型就决定了协议层的重要实现,两种模型各有利弊,不同区块链针对想聚焦的场景自身会有判断. UTXO 的起源(来自高明的中本聪) 中本聪对比特币的设计,让整个世界进入了数字货币时代.比特币起源于中本聪,UTXO出自比特币.自然,UTXO来自高明的中本聪.UTXO的优点: 在版本控制方面的考虑,svn 是中心化的数据库保持一份账本,这和区块

社区观点 | 理解比原链MOV链上交换协议

去中心化交换协议的发展 从Bitshare,Stellar到以太坊上的Etherdelta,Bancor,0x协议,去中心化交换协议也经过了好几代发展和很多模式的探索,每一代都通过前面的协议的痛点来进行改进和深化, 主要分为: 链上orderbook,链上结算; 链下orderbook,链上结算; 基于智能合约管理的资金池; 链上orderbook,链上结算 最早的 基于以太坊的去中心化交换协议的成功探索非Etherdelta莫属,曾一度占据去中心化交换市场的半壁江山.Etherdelta是较为