题目描述
给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少。
输入
The first line contains integer n (1 ≤ n ≤ 105), showing how many numbers the sequence has. The next line contains n integers a1, a2, ..., an (|ai| ≤ 500).
The third line contains integer m (1 ≤ m ≤ 105) — the number of queries. The next m lines contain the queries in the format, given in the statement.
All changing queries fit into limits: 1 ≤ i ≤ n, |val| ≤ 500.
All queries to count the maximum sum of at most k non-intersecting subsegments fit into limits: 1 ≤ l ≤ r ≤ n, 1 ≤ k ≤ 20. It is guaranteed that the number of the queries to count the maximum sum of at most k non-intersecting subsegments doesn‘t exceed 10000.
输出
For each query to count the maximum sum of at most k non-intersecting subsegments print the reply — the maximum sum. Print the answers to the queries in the order, in which the queries follow in the input.
样例输入
9
9 -8 9 -1 -1 -1 9 -8 9
3
1 1 9 1
1 1 9 2
1 4 6 3
样例输出
17
25
0
题解
模拟费用流+线段树区间合并
一开始想了个类似于dp的线段树区间合并结果一看数据范围果断放弃了。。。看了题解才知道是模拟费用流。。。
考虑如果用费用流的话怎么处理:每个点有一个大小为点权的费用,每次选择一段区间,获得这些点权和的费用,然后反向边使得它们的费用取相反数。
这个过程需要维护最大连续子段和(及其位置)、支持区间翻转。可以使用线段树来维护。
每个节点维护这段区间的区间和,包含左端点的最大连续子段和、包含右端点的最大连续子段和、整体的最大连续子段和,以及最小连续字段和;还要维护翻转标记。同时,对于和及连续字段和还要维护出现的区间位置。
每个询问不断的找区间内最大连续子段和,如果其大于0则取出并区间取相反数(模拟增广的过程)。最后再把这些取了相反数的区间还原回来。
代码量极大。。。强烈建议使用结构体重载运算符以减少代码量。
时间复杂度$O(nk\log n)$。
#include <cstdio> #include <algorithm> #define N 100010 #define lson l , mid , x << 1 #define rson mid + 1 , r , x << 1 | 1 using namespace std; struct data { int v , l , r; data() {} data(int V , int L , int R) {v = V , l = L , r = R;} bool operator<(const data &a)const {return v < a.v;} data operator+(const data &a)const {return data(v + a.v , l , a.r);} data operator-()const {return data(-v , l , r);} }now , sta[25]; struct seg { data vsum , lmax , lmin , rmax , rmin , tmax , tmin; int rev; seg() {} seg(int v , int p) { vsum = data(v , p , p) , rev = 0; if(v > 0) { lmax = rmax = tmax = data(v , p , p); lmin = data(0 , p , p - 1) , rmin = data(0 , p + 1 , p) , tmin = data(0 , 0 , 0); } else { lmax = data(0 , p , p - 1) , rmax = data(0 , p + 1 , p) , tmax = data(0 , 0 , 0); lmin = rmin = tmin = data(v , p , p); } } seg operator+(const seg &a)const { seg ans; ans.vsum = vsum + a.vsum; ans.lmax = max(lmax , vsum + a.lmax) , ans.lmin = min(lmin , vsum + a.lmin); ans.rmax = max(a.rmax , rmax + a.vsum) , ans.rmin = min(a.rmin , rmin + a.vsum); ans.tmax = max(rmax + a.lmax , max(tmax , a.tmax)) , ans.tmin = min(rmin + a.lmin , min(tmin , a.tmin)); ans.rev = 0; return ans; } }a[N << 2]; inline void pushup(int x) { a[x] = a[x << 1] + a[x << 1 | 1]; } inline void rever(int x) { swap(a[x].lmax , a[x].lmin) , swap(a[x].rmax , a[x].rmin) , swap(a[x].tmax , a[x].tmin); a[x].vsum = -a[x].vsum; a[x].lmax = -a[x].lmax , a[x].lmin = -a[x].lmin; a[x].rmax = -a[x].rmax , a[x].rmin = -a[x].rmin; a[x].tmax = -a[x].tmax , a[x].tmin = -a[x].tmin; a[x].rev ^= 1; } inline void pushdown(int x) { if(a[x].rev) rever(x << 1) , rever(x << 1 | 1) , a[x].rev = 0; } void build(int l , int r , int x) { if(l == r) { int v; scanf("%d" , &v) , a[x] = seg(v , l); return; } int mid = (l + r) >> 1; build(lson) , build(rson); pushup(x); } void modify(int p , int v , int l , int r , int x) { if(l == r) { a[x] = seg(v , l); return; } pushdown(x); int mid = (l + r) >> 1; if(p <= mid) modify(p , v , lson); else modify(p , v , rson); pushup(x); } void update(int b , int e , int l , int r , int x) { if(b <= l && r <= e) { rever(x); return; } pushdown(x); int mid = (l + r) >> 1; if(b <= mid) update(b , e , lson); if(e > mid) update(b , e , rson); pushup(x); } seg query(int b , int e , int l , int r , int x) { if(b <= l && r <= e) return a[x]; pushdown(x); int mid = (l + r) >> 1; if(e <= mid) return query(b , e , lson); else if(b > mid) return query(b , e , rson); else return query(b , e , lson) + query(b , e , rson); } int main() { int n , m , opt , x , y , z , tot , ans; scanf("%d" , &n); build(1 , n , 1); scanf("%d" , &m); while(m -- ) { scanf("%d%d%d" , &opt , &x , &y); if(opt == 1) { scanf("%d" , &z) , tot = ans = 0; while(tot < z) { now = query(x , y , 1 , n , 1).tmax; if(now.v <= 0) break; ans += now.v , update(now.l , now.r , 1 , n , 1); sta[++tot] = now; } printf("%d\n" , ans); while(tot) update(sta[tot].l , sta[tot].r , 1 , n , 1) , tot -- ; } else modify(x , y , 1 , n , 1); } return 0; }