【BZOJ】【1042】【HAOI2008】硬币购物

DP+容斥原理



  sigh……就差一点……

  四种硬币的数量限制就是四个条件,满足条件1的方案集合为A,满足条件2的方案集合为B……我们要求的就是同时满足四个条件的方案集合$A\bigcap B\bigcap C\bigcap D$的大小。

  全集很好算……一个完全背包>_>$4×10^5$就可以预处理出来……

  然后我sb地去算满足一个条件、两个条件……的方案数去了QAQ根本算不出来啊

  orz了hzwer的题解,其实是算 不满足一个条件、不满足两个条件…的方案数的,因为如果第一种硬币超了,说明用了d[1]+1个第一种硬币,剩下的随意!!!而这个剩下的部分就是 f[rest]!!所以就可以O(1)查询了……sad

  人太弱有些悲伤……

 1 /**************************************************************
 2     Problem: 1042
 3     User: Tunix
 4     Language: C++
 5     Result: Accepted
 6     Time:40 ms
 7     Memory:2052 kb
 8 ****************************************************************/
 9
10 //BZOJ 1042
11 #include<vector>
12 #include<cstdio>
13 #include<cstring>
14 #include<cstdlib>
15 #include<iostream>
16 #include<algorithm>
17 #define rep(i,n) for(int i=0;i<n;++i)
18 #define F(i,j,n) for(int i=j;i<=n;++i)
19 #define D(i,j,n) for(int i=j;i>=n;--i)
20 #define pb push_back
21 using namespace std;
22 inline int getint(){
23     int v=0,sign=1; char ch=getchar();
24     while(ch<‘0‘||ch>‘9‘){ if (ch==‘-‘) sign=-1; ch=getchar();}
25     while(ch>=‘0‘&&ch<=‘9‘){ v=v*10+ch-‘0‘; ch=getchar();}
26     return v*sign;
27 }
28 const int N=1e5+10,INF=~0u>>2;
29 typedef long long LL;
30 /******************tamplate*********************/
31 int c[5],d[5],s,n;
32 LL ans,f[N];
33 void dfs(int x,int k,int sum){
34     if (sum<0) return;
35     if (x==5){
36         if (k&1) ans-=f[sum];
37         else ans+=f[sum];
38         return;
39     }
40     dfs(x+1,k+1,sum-(d[x]+1)*c[x]);
41     dfs(x+1,k,sum);
42 }
43 int main(){
44 #ifndef ONLINE_JUDGE
45     freopen("1042.in","r",stdin);
46     freopen("1042.out","w",stdout);
47 #endif
48     F(i,1,4) c[i]=getint(); n=getint();
49     f[0]=1;
50     F(i,1,4) F(j,c[i],1e5) f[j]+=f[j-c[i]];
51
52     F(i,1,n){
53         F(i,1,4) d[i]=getint(); s=getint();
54         ans=0;
55         dfs(1,0,s);
56         printf("%lld\n",ans);
57     }
58     return 0;
59 }
60 

1042: [HAOI2008]硬币购物

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1282  Solved: 754
[Submit][Status][Discuss]

Description

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

Input

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s

Output

每次的方法数

Sample Input

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

Sample Output

4
27

HINT

数据规模

di,s<=100000

tot<=1000

Source

[Submit][Status][Discuss]

时间: 2024-10-15 03:11:35

【BZOJ】【1042】【HAOI2008】硬币购物的相关文章

bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][Status][Discuss] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3

[BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案. 为了避免重复的方案被转移,所以我们以硬币种类为第一层循环,这样阶段性的增加硬币. 一定要注意这个第一层循环要是硬币种类,并且初始 f[0] = 1. f[0] = 1; for (int i = 1; i <= 4; ++i) { for (int j = B[i]; j <= MaxS; +

BZOJ 1042: [HAOI2008]硬币购物(容斥原理)

http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题意: 思路: 如果不考虑硬币个数的话,这就是一道完全完全背包的题目. 直接求的话行不通,于是这里要用容斥原理来做. 简单来说,ans=一种没超-一种硬币超+两种硬币超-三种硬币超+四种硬币超. 1 #include<iostream> 2 #include<algorithm> 3 #include<cstring> 4 #include<cstdio>

BZOJ 1042 [HAOI2008]硬币购物 容斥原理

题意:链接 方法:容斥原理 解析:简单题,不掉坑都对不起我自己 这题很好想的一个容斥原理,因为一共只有四种硬币,我们不方便计算满足题中要求的方案数,但是从反向思考,我们需要做的就是减掉奇数个硬币用超额的情况,然后加上偶数个硬币用超额的情况就是最终的答案(当然状态是0000的时候看做是一个基准). 然后我没什么说的了,只是有一些细节需要注意下: 1.要用long long 2.完全背包千万不要傻到每次重新背,直接一次预处理就好,不过我为什么要重新背啊!(差了8s) 代码: #include <cs

bzoj 1042 HAOI2008 硬币购物

这道题思路是在是神. 先dp出没有限制时候的方案数. dp的时候注意 先循环 1..4 再循环 1..maxs 防止重复.边界是f[0] = 1. 这么基础的背包都忘记了=_= 接下来处理有重复的问题,容斥原理     容斥原理说起来很简单,但有一些很神奇的应用,比如这道题. 最终的答案 = 没有限制的方案 - 其中一种超了限制的方案 + 其中两种超了限制的方案 - 三种超了限制的方案 + 四种超了限制的方案 ans = f[s] + f[s - c[i]*(d[i]+1)]  - ……  +

bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】

当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #include<iostream> #include<cstdio> using namespace std; const long long N=100005; long long c[10],T,d[10],s,f[N],ans; long long read() { long long

【BZOJ 1042】 [HAOI2008]硬币购物

1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1175  Solved: 697 [Submit][Status] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s Output

bzoj1042: [HAOI2008]硬币购物

好神的容斥原理 #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define clr(x,c) memset(x,c,sizeof(x)) #define ll long long int

BZOJ-1042: [HAOI2008]硬币购物 (背包DP+容斥原理)

1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2888  Solved: 1777[Submit][Status][Discuss] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,

[HAOI2008]硬币购物

[HAOI2008]硬币购物 题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s 输出格式: 每次的方法数 输入输出样例 输入样例#1: 1 2 5 10 2 3 2 3 1 10 1000 2 2 2 900 输出样例#1: 4 27 说明 di,s<=100000 to