机器学习基石笔记-Lecture 10 Logistic regression

soft binary classification的概念:软二分类,不直接化为-1、1,而是给出一个概率值。

目标函数是一个概率值,但是拿到的data中y只有0、1(或者-1、1),可以看做是有noise的data。

logistic hypothesis

通过 theta 转化为 0、1间的数。

目标函数f(x)其实呢就是,那么

那么对N个样本,产生的概率是

对于f的估计h,似然函数为

那么有:

使

用w替换掉h,即求w的极大似然估计

化简后等价于

最后的Ein就是cross-entropy error

接下来要做的事就是找到一个w使得Ein最小。

注意到Ein是连续的、可微的、凸函数,所以对w求偏导能得到最优解。(与linear regression思路一样)

但是 最后偏导出来的不是一个一次方程,不能像linear regression那样直接写出解。

gradient  descent

想象成下山,每次探索的结果只要比现在的低,就走出去。在步长固定时,当前点的负梯度是下降最迅速的方向。

一阶泰勒展开

确定了下降的方向后,再考虑走出的步长。步长过大或过小都不好,我们希望在梯度比较大的时候步长稍微大一点,平缓的时候步长小一点。其实就和正相关。

它们的比例系数 叫做学习率。

学习过程

注意这里算法终止的条件是梯度足够小或者迭代达到最高次数。

梯度下降法每次计算在 w_t的梯度时,需要将n个点都计算一遍 然后求平均值

stochastic gradient descent

在样本量很大时,梯度下降法每次迭代都要计算n各点对梯度的贡献。

随机梯度下降法在更新w时,只随机选取一个点计算,当做梯度替代 n个点的平均

logistic regression:

优点:计算代价不高,易于理解和实现。

缺点:容易欠拟合,分类精度可能不高。

适用:数值型和标称型数据。

时间: 2024-11-05 20:46:27

机器学习基石笔记-Lecture 10 Logistic regression的相关文章

机器学习基石笔记-Lecture 9 Linear regression

线性回归的任务是对于一个输入,给出输出的实数,保证和真实输出相差越小越好.因为假设空间是线性的,所以最后的g会是直线或者平面. 通常的误差衡量方法是使用平方误差 接下来的问题是如何最小化 Ein 将Ein写成矩阵形式, 注意到Ein是w的函数,是连续的.可微的.凸函数. 对w求偏导使之为0则可以求出最优点.  这是一个关于w的一次方程. 在  不可逆时,它的 pseudo-inverse仍然存在,只是会有多个,选取其中一个去得到w即可. 线性回归是一个学习算法吗? 先来看一看它的Ein H也可以

机器学习基石笔记-Lecture 3 Types of learning

介绍了机器学习中的几类问题划分. 半监督学习能够避免标记成本昂贵的问题. 强化学习,可以看做是从反馈机制中来学习. 在线学习,数据一个接一个地产生并交给算法模型线上迭代. 主动学习,机器能针对自己没有信心的数据提问,得到答案后再学习. 针对特征空间也有分类,比如具体的特征.原始的(个人理解是人为可提取的)特征和抽象的(个人理解是难以提炼的)特征.

机器学习基石笔记-Lecture 5-7 VC dimension

为了引出VC维做了很长的铺垫..VC维:用来描述假设空间的表达能力. 第四节讲到对有限的假设空间,只要N足够大,不管A如何选g,训练数据如何选取,g的训练错误率和真实的错误率都很接近. 现在先解决无限假设空间的问题. 希望找到一个 m_H 来替代无限大的M. 系数M的来源是因为对bad data的概率值进行了累加. 但是其实一些h在同一个data上是重叠的,union bound将概率放大了.这样就希望对h进行一些划分,找出在data上表现类似的h,归为一类. 这里举出了二维感知机分类的例子,来

机器学习基石笔记-Lecture 4 Learning is possible

hoeffding 不等式 说明了在样本量足够大时,抽样估计能够接近真实值. 类比到ml中,对给定的一个假设空间中的h, 它在整个样本空间中的表现可以由在部分样本点上的表现来近似.也就是说样本足够多的时候,Ein与Eout近似相等. 现在已经知道对任意给定的h,在N足够大时,Ein近似于Eout,如果 Ein 非常小,那么Eout也就小,就说明这个 h 和 真实的 f 在很大概率上是很接近的. 现在的一个问题是,如果在多个假设中,其中一个假设h针对训练数据的输出都是正确的,也就是Ein为0,是不

机器学习基石笔记10——机器可以怎样学习(2)

转载请注明出处:http://www.cnblogs.com/ymingjingr/p/4271742.html 目录 机器学习基石笔记1——在何时可以使用机器学习(1) 机器学习基石笔记2——在何时可以使用机器学习(2) 机器学习基石笔记3——在何时可以使用机器学习(3)(修改版) 机器学习基石笔记4——在何时可以使用机器学习(4) 机器学习基石笔记5——为什么机器可以学习(1) 机器学习基石笔记6——为什么机器可以学习(2) 机器学习基石笔记7——为什么机器可以学习(3) 机器学习基石笔记8

机器学习基石笔记15——机器可以怎样学得更好(3)

转载请注明出处:http://www.cnblogs.com/ymingjingr/p/4271742.html 目录 机器学习基石笔记1——在何时可以使用机器学习(1) 机器学习基石笔记2——在何时可以使用机器学习(2) 机器学习基石笔记3——在何时可以使用机器学习(3)(修改版) 机器学习基石笔记4——在何时可以使用机器学习(4) 机器学习基石笔记5——为什么机器可以学习(1) 机器学习基石笔记6——为什么机器可以学习(2) 机器学习基石笔记7——为什么机器可以学习(3) 机器学习基石笔记8

机器学习基石笔记9——机器可以怎样学习(1)

转载请注明出处:http://www.cnblogs.com/ymingjingr/p/4271742.html 目录 机器学习基石笔记1——在何时可以使用机器学习(1) 机器学习基石笔记2——在何时可以使用机器学习(2) 机器学习基石笔记3——在何时可以使用机器学习(3)(修改版) 机器学习基石笔记4——在何时可以使用机器学习(4) 机器学习基石笔记5——为什么机器可以学习(1) 机器学习基石笔记6——为什么机器可以学习(2) 机器学习基石笔记7——为什么机器可以学习(3) 机器学习基石笔记8

机器学习基石笔记8——为什么机器可以学习(4)

转载请注明出处:http://www.cnblogs.com/ymingjingr/p/4271742.html 目录 机器学习基石笔记1——在何时可以使用机器学习(1) 机器学习基石笔记2——在何时可以使用机器学习(2) 机器学习基石笔记3——在何时可以使用机器学习(3)(修改版) 机器学习基石笔记4——在何时可以使用机器学习(4) 机器学习基石笔记5——为什么机器可以学习(1) 机器学习基石笔记6——为什么机器可以学习(2) 机器学习基石笔记7——为什么机器可以学习(3) 机器学习基石笔记8

机器学习基石笔记14——机器可以怎样学得更好(2)

转载请注明出处:http://www.cnblogs.com/ymingjingr/p/4271742.html 目录 机器学习基石笔记1——在何时可以使用机器学习(1) 机器学习基石笔记2——在何时可以使用机器学习(2) 机器学习基石笔记3——在何时可以使用机器学习(3)(修改版) 机器学习基石笔记4——在何时可以使用机器学习(4) 机器学习基石笔记5——为什么机器可以学习(1) 机器学习基石笔记6——为什么机器可以学习(2) 机器学习基石笔记7——为什么机器可以学习(3) 机器学习基石笔记8