在上一篇,我们从使用方式和策略上,对消息队列做了一个宏观描述。从本篇开始,我们将深入到源码内部,仔细分析Kafka到底是如何实现一个分布式消息队列。我们的分析将从Producer端开始。
从Kafka 0.8.2开始,发布了一套新的Java版的client api, KafkaProducer/KafkaConsumer,替代之前的scala版的api。本系列的分析将只针对这套Java版的api。
多线程异步发送模型
下图是经过源码分析之后,整理出来的Producer端的架构图:
这里写图片描述
在上一篇我们讲过,Producer有同步发送和异步发送2种策略。在以前的Kafka client api实现中,同步和异步是分开实现的。而在0.9中,同步发送其实是通过异步发送间接实现,其接口如下:
public class KafkaProducer<K, V> implements Producer<K, V> {
...
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) //异步发送接口
{
...
}
}
1
2
3
4
5
6
7
要实现同步发送,只要在拿到返回的Future对象之后,直接调用get()就可以了。
基本思路
从上图我们可以看出,异步发送的基本思路就是:send的时候,KafkaProducer把消息放到本地的消息队列RecordAccumulator,然后一个后台线程Sender不断循环,把消息发给Kafka集群。
要实现这个,还得有一个前提条件:就是KafkaProducer/Sender都需要获取集群的配置信息Metadata。所谓Metadata,也就是在上一篇所讲的,Topic/Partion与broker的映射关系:每一个Topic的每一个Partion,得知道其对应的broker列表是什么,其中leader是谁,follower是谁。
2个数据流
所以在上图中,有2个数据流:
Metadata流(A1,A2,A3):Sender从集群获取信息,然后更新Metadata; KafkaProducer先读取Metadata,然后把消息放入队列。
消息流(B1, B2, B3):这个很好理解,不再详述。
本篇着重讲述Metadata流,消息流,将在后续详细讲述。
Metadata的线程安全性
从上图可以看出,Metadata是多个producer线程读,一个sender线程更新,因此它必须是线程安全的。
Kafka的官方文档上也有说明,KafkaProducer是线程安全的,可以在多线程中调用:
The producer is thread safe and sharing a single producer instance across threads will generally be faster than having multiple instances.
从下面代码也可以看出,它的所有public方法都是synchronized:
public final class Metadata {
。。。
public synchronized Cluster fetch() {
return this.cluster;
}
public synchronized long timeToNextUpdate(long nowMs) {
。。。
}
public synchronized int requestUpdate() {
。。。
}
。。。
}
1
2
3
4
5
6
7
8
9
10
11
12
13
Metadata的数据结构
下面代码列举了Metadata的主要数据结构:一个Cluster对象 + 1堆状态变量。前者记录了集群的配置信息,后者用于控制Metadata的更新策略。
public final class www.tyff688.com Metadata {
...
private final long refreshBackoffMs; //更新失败的情况下,下1次更新的补偿时间(这个变量在代码中意义不是太大)
private final long metadataExpireMs; //关键值:每隔多久,更新一次。缺省是600*1000,也就是10分种
private int version; //每更新成功1次,version递增1。这个变量主要用于在while循环,wait的时候,作为循环判断条件
private long lastRefreshMs; //上一次更新时间(也包含更新失败的情况)
private long lastSuccessfulRefreshMs; //上一次成功更新的时间(如果每次都成功的话,则2者相等。否则,lastSuccessulRefreshMs < lastRefreshMs)
private Cluster cluster; //集群配置信息
private boolean needUpdate; //是否强制刷新
、
...
}
public final class Cluster {
...
private final List<Node> nodes; //www.senta77.com Node也就是Broker
private final Map<TopicPartition, PartitionInfo> partitionsByTopicPartition; //Topic/Partion和broker list的映射关系
private final Map<String, List<PartitionInfo>> partitionsByTopic;
private final Map<String, List<PartitionInfo>> availablePartitionsByTopic;
private final Map<Integer, List<PartitionInfo>> partitionsByNode;
private final Map<Integer, Node> nodesById;
}
public class PartitionInfo {
private final String topic;
private final int partition;
private final Node www.xbyl688.com leader;
private final Node[] replicas;
private final Node[] www.honqili66.com inSyncReplicas;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
producer读取Metadata
下面是send函数的源码,可以看到,在send之前,会先读取metadata。如果metadata读不到,会一直阻塞在那,直到超时,抛出TimeoutException
//KafkaProducer
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
try {
long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs); //拿不到topic的配置信息,会一直阻塞在这,直到抛异常
... //拿到了,执行下面的send逻辑
} catch()
{}
}
//KafkaProducer
private long waitOnMetadata(String topic, long maxWaitMs) throws InterruptedException {
if (!this.metadata.containsTopic(topic))
this.metadata.add(topic);
if (metadata.fetch().partitionsForTopic(topic) != null)
return 0; //取到topic的配置信息,直接返回
long begin = time.milliseconds();
long remainingWaitMs = maxWaitMs;
while (metadata.fetch().partitionsForTopic(topic) == null) { //取不到topic的配置信息,一直死循环wait,直到超时,抛TimeoutException
log.trace("Requesting metadata update for topic {}.", topic);
int version = metadata.requestUpdate(); //把needUpdate置为true
sender.wakeup(); //唤起sender
metadata.awaitUpdate(version, remainingWaitMs); //metadata的关键函数
long elapsed = time.milliseconds() - begin;
if (elapsed >= maxWaitMs)
throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms.");
if (metadata.fetch().unauthorizedTopics().contains(topic))
throw new TopicAuthorizationException(topic);
remainingWaitMs = maxWaitMs - elapsed;
}
return time.milliseconds() - begin;
}
//Metadata
public synchronized void awaitUpdate(final int lastVersion, final long maxWaitMs) throws InterruptedException {
if (maxWaitMs < 0) {
throw new IllegalArgumentException("Max time to wait for metadata updates should not be < 0 milli seconds");
}
long begin = System.currentTimeMillis();
long remainingWaitMs = maxWaitMs;
while (this.version <= lastVersion) { //当Sender成功更新meatadata之后,version加1。否则会循环,一直wait
if (remainingWaitMs != 0
wait(remainingWaitMs); //线程的wait机制,wait和synchronized的配合使用
long elapsed = System.currentTimeMillis() - begin;
if (elapsed >= maxWaitMs) //wait时间超出了最长等待时间
throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms.");
remainingWaitMs = maxWaitMs - elapsed;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
总结:从上面代码可以看出,producer wait metadata的时候,有2个条件:
(1) while (metadata.fetch().partitionsForTopic(topic) == null)
(2)while (this.version <= lastVersion)
有wait就会有notify,notify在Sender更新Metadata的时候发出。
Sender更新Metadata
Sender的创建
下面是KafkaProducer的构造函数,从代码可以看出,Sender就是KafkaProducer中创建的一个Thread.
private KafkaProducer(ProducerConfig config, Serializer<K> keySerializer, Serializer<V> valueSerializer) {
try {
...
this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG)); //构造metadata
this.metadata.update(Cluster.bootstrap(addresses), time.milliseconds()); //往metadata中,填入初始的,配置的node列表
ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config.values());
NetworkClient client = new NetworkClient(
new Selector(config.getLong(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG), this.metrics, time, "producer", metricTags, channelBuilder),
this.metadata,
clientId,
config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION),
config.getLong(ProducerConfig.RECONNECT_BACKOFF_MS_CONFIG),
config.getInt(ProducerConfig.SEND_BUFFER_CONFIG),
config.getInt(ProducerConfig.RECEIVE_BUFFER_CONFIG),
this.sender = new Sender(client, //构造一个sender。sender本身实现的是Runnable接口
this.metadata,
this.accumulator,
config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG),
(short) parseAcks(config.getString(ProducerConfig.ACKS_CONFIG)),
config.getInt(ProducerConfig.RETRIES_CONFIG),
this.metrics,
new SystemTime(),
clientId,
this.requestTimeoutMs);
String ioThreadName = "kafka-producer-network-thread" + (clientId.length() > 0 ? " | " + clientId : "");
this.ioThread = new KafkaThread(ioThreadName, this.sender, true);
this.ioThread.start(); //一个线程,开启sender
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Metadata的更新机制 – Sender的run方法
public void run() {
// main loop, runs until close is called
while (running) {
try {
run(time.milliseconds());
} catch (Exception e) {
log.error("Uncaught error in kafka producer I/O thread: ", e);
}
}
。。。
}
public void run(long now) {
Cluster cluster = metadata.fetch();
。。。
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now); //遍历消息队列中所有的消息,找出对应的,已经ready的Node
if (result.unknownLeadersExist) //如果一个ready的node都没有,请求更新metadata
this.metadata.requestUpdate();
。。。
//client的2个关键函数,一个发送ClientRequest,一个接收ClientResponse。底层调用的是NIO的poll。关于nio, 后面会详细介绍
for (ClientRequest request : requests)
client.send(request, now);
this.client.poll(pollTimeout, now);
}
//NetworkClient
public List<ClientResponse> poll(long timeout, long now) {
long metadataTimeout = metadataUpdater.maybeUpdate(now); //判断是否要更新metadata
try {
this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
} catch (IOException e) {
log.error("Unexpected error during I/O", e);
}
// process completed actions
long updatedNow = this.time.milliseconds();
List<ClientResponse> responses = new ArrayList<>();
handleCompletedSends(responses, updatedNow);
handleCompletedReceives(responses, updatedNow); //在返回的handler中,会处理metadata的更新
handleDisconnections(responses, updatedNow);
handleConnections();
handleTimedOutRequests(responses, updatedNow);
// invoke callbacks
for (ClientResponse response : responses) {
if (response.request().hasCallback()) {
try {
response.request().callback().onComplete(response);
} catch (Exception e) {
log.error("Uncaught error in request completion:", e);
}
}
}
return responses;
}
//DefaultMetadataUpdater
@Override
public long maybeUpdate(long now) {
// should we update our metadata?
long timeToNextMetadataUpdate = metadata.timeToNextUpdate(now);
long timeToNextReconnectAttempt = Math.max(this.lastNoNodeAvailableMs + metadata.refreshBackoff() - now, 0);
long waitForMetadataFetch = this.metadataFetchInProgress ? Integer.MAX_VALUE : 0;
// if there is no node available to connect, back off refreshing metadata
long metadataTimeout = Math.max(Math.max(timeToNextMetadataUpdate, timeToNextReconnectAttempt),
waitForMetadataFetch);
if (metadataTimeout == 0) {
// highly dependent on the behavior of leastLoadedNode.
Node node = leastLoadedNode(now); //找到负载最小的Node
maybeUpdate(now, node); //把更新Metadata的请求,发给这个Node
}
return metadataTimeout;
}
private void maybeUpdate(long now, Node node) {
if (node == null) {
log.debug("Give up sending metadata request since no node is available");
// mark the timestamp for no node available to connect
this.lastNoNodeAvailableMs = now;
return;
}
String nodeConnectionId = node.idString();
if (canSendRequest(nodeConnectionId)) {
Set<String> topics = metadata.needMetadataForAllTopics() ? new HashSet<String>() : metadata.topics();
this.metadataFetchInProgress = true;
ClientRequest metadataRequest = request(now, nodeConnectionId, topics); //关键点:发送更新Metadata的Request
log.debug("Sending metadata request {} to node {}", metadataRequest, node.id());
doSend(metadataRequest, now); //这里只是异步发送,返回的response在上面的handleCompletedReceives里面处理
} else if (connectionStates.canConnect(nodeConnectionId, now)) {
log.debug("Initialize connection to node {} for sending metadata request", node.id());
initiateConnect(node, now);
} else { // connected, but can‘t send more OR connecting
this.lastNoNodeAvailableMs = now;
}
}
private void handleCompletedReceives(List<ClientResponse> responses, long now) {
for (NetworkReceive receive : this.selector.completedReceives()) {
String source = receive.source();
ClientRequest req = inFlightRequests.completeNext(source);
ResponseHeader header = ResponseHeader.parse(receive.payload());
// Always expect the response version id to be the same as the request version id
short apiKey = req.request().header().apiKey();
short apiVer = req.request().header().apiVersion();
Struct body = (Struct) ProtoUtils.responseSchema(apiKey, apiVer).read(receive.payload());
correlate(req.request().header(), header);
if (!metadataUpdater.maybeHandleCompletedReceive(req, now, body))
responses.add(new ClientResponse(req, now, false, body));
}
}
@Override
public boolean maybeHandleCompletedReceive(ClientRequest req, long now, Struct body) {
short apiKey = req.request().header().apiKey();
if (apiKey == ApiKeys.METADATA.id && req.isInitiatedByNetworkClient()) {
handleResponse(req.request().header(), body, now);
return true;
}
return false;
}
//关键函数
private void handleResponse(RequestHeader header, Struct body, long now) {
this.metadataFetchInProgress = false;
MetadataResponse response = new MetadataResponse(body);
Cluster cluster = response.cluster(); //从response中,拿到一个新的cluster对象
if (response.errors().size() > 0) {
log.warn("Error while fetching metadata with correlation id {} : {}", header.correlationId(), response.errors());
}
if (cluster.nodes().size() > 0) {
this.metadata.update(cluster, now); //更新metadata,用新的cluster覆盖旧的cluster
} else {
log.trace("Ignoring empty metadata response with correlation id {}.", header.correlationId());
this.metadata.failedUpdate(now); //更新metadata失败,做失败处理逻辑
}
}
//更新成功,version+1, 同时更新其它字段
public synchronized void update(Cluster cluster, long now) {
this.needUpdate = false;
this.lastRefreshMs = now;
this.lastSuccessfulRefreshMs = now;
this.version += 1;
for (Listener listener: listeners)
listener.onMetadataUpdate(cluster); //如果有人监听了metadata的更新,通知他们
this.cluster = this.needMetadataForAllTopics ? getClusterForCurrentTopics(cluster) : cluster; //新的cluster覆盖旧的cluster
notifyAll(); //通知所有的阻塞的producer线程
log.debug("Updated cluster metadata version {} to {}", this.version, this.cluster);
}
//更新失败,只更新lastRefreshMs
public synchronized void failedUpdate(long now) {
this.lastRefreshMs = now;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
总结
最后做一个总结:
(1) Metadata的更新,是在while循环,每次调用client.poll()的时候更新的。在这个while循环中,通过记录当前时间,来实现各种超时机制。
(2) 更新机制有2个:
机制1:每隔一段时间更新一次,这个通过 Metadata的lastRefreshMs, lastSuccessfulRefreshMs 这2个字段来实现
机制2:强制更新, 通过Metadata的needUpdate字段来实现。 requestUpdate()函数里面其实什么都没做,就是把needUpdate置成了false
每次poll的时候,都检查这2个条件,达到了,就触发更新
(3) 更新请求MetadataRequest是nio异步发送的,在poll的返回中,处理MetadataResponse的时候,才真正更新Metadata。
这里有个关键点:Metadata的cluster对象,每次是整个覆盖的,而不是局部更新。所以cluster内部不用加锁。
(4) 更新的时候,是从metadata保存的所有Node,或者说Broker中,选负载最小的那个,也就是当前接收请求最少的那个。向其发送MetadataRequest请求,获取新的Cluster对象。
Kafka源码分析-序列2 -Producer
时间: 2024-10-09 07:02:56
Kafka源码分析-序列2 -Producer的相关文章
apache kafka源码分析走读-Producer分析
apache kafka中国社区QQ群:162272557 producer的发送方式剖析 Kafka提供了Producer类作为java producer的api,该类有sync和async两种发送方式. sync架构图 async架构图 调用流程如下: 代码流程如下: Producer:当new Producer(new ProducerConfig()),其底层实现,实际会产生两个核心类的实例:Producer.DefaultEventHandler.在创建的同时,会默认new一个Prod
apache kafka源码分析-Producer分析---转载
原文地址:http://www.aboutyun.com/thread-9938-1-1.html 问题导读1.Kafka提供了Producer类作为java producer的api,此类有几种发送方式?2.总结调用producer.send方法包含哪些流程?3.Producer难以理解的在什么地方? producer的发送方式剖析Kafka提供了Producer类作为java producer的api,该类有sync和async两种发送方式.sync架构图 async架构图 调用流程如下:
Kafka源码分析及图解原理之Producer端
一.前言 任何消息队列都是万变不离其宗都是3部分,消息生产者(Producer).消息消费者(Consumer)和服务载体(在Kafka中用Broker指代).那么本篇主要讲解Producer端,会有适当的图解帮助理解底层原理. 一.开发应用 首先介绍一下开发应用,如何构建一个KafkaProducer及使用,还有一些重要参数的简介. 1.1 一个栗子 1 /** 2 * Kafka Producer Demo实例类. 3 * 4 * @author GrimMjx 5 */ 6 public
kafka源码分析之一server启动分析
1. 分析kafka源码的目的 深入掌握kafka的内部原理 深入掌握scala运用 2. server的启动 如下所示(本来准备用时序图的,但感觉时序图没有思维图更能反映,故采用了思维图): 2.1 启动入口Kafka.scala 从上面的思维导图,可以看到Kafka的启动入口是Kafka.scala的main()函数: def main(args: Array[String]): Unit = { try { val serverProps = getPropsFromArgs(args)
Kafka源码分析-序列2 -Producer -Metadata的数据结构与读取、更新策略
在上一篇,我们从使用方式和策略上,对消息队列做了一个宏观描述.从本篇开始,我们将深入到源码内部,仔细分析Kafka到底是如何实现一个分布式消息队列.我们的分析将从Producer端开始. 从Kafka 0.8.2开始,发布了一套新的Java版的client api, KafkaProducer/KafkaConsumer,替代之前的scala版的api.本系列的分析将只针对这套Java版的api. 多线程异步发送模型 下图是经过源码分析之后,整理出来的Producer端的架构图: 在上一篇我们讲
Kafka源码分析-序列4 -Producer -network层核心原理
在上一篇我们分析了Java NIO的原理和使用方式,本篇将进一步分析Kafka client是如何基于NIO构建自己的network层. network层的分层架构 下图展示了从最上层的KafkaProducer到最底层的Java NIO的构建层次关系: 图中淡紫色的方框表示接口或者抽象类,白色方框是具体实现. 整个架构图也体现了"面向接口编程"的思想:最底层Java NIO往上层全部以接口形式暴露,上面的3层,也都定义了相应的接口,逐层往上暴露. 接口的实例化(包括KafkaClie
Apache Kafka源码分析 - KafkaApis
kafka apis反映出kafka broker server可以提供哪些服务,broker server主要和producer,consumer,controller有交互,搞清这些api就清楚了broker server的所有行为 handleOffsetRequest 提供对offset的查询的需求,比如查询earliest,latest offset是什么,或before某个时间戳的offset是什么 try { // ensure leader exists // 确定是否是lead
kafka源码分析(二)Metadata的数据结构与读取、更新策略
一.基本思路 异步发送的基本思路就是:send的时候,KafkaProducer把消息放到本地的消息队列RecordAccumulator,然后一个后台线程Sender不断循环,把消息发给Kafka集群. 要实现这个,还得有一个前提条件:就是KafkaProducer/Sender都需要获取集群的配置信息Metadata.所谓Metadata,也就是在上一篇所讲的,Topic/Partion与broker的映射关系:每一个Topic的每一个Partion,得知道其对应的broker列表是什么,其
Apache Kafka源码分析 - autoLeaderRebalanceEnable
在broker的配置中,auto.leader.rebalance.enable (false) 那么这个leader是如何进行rebalance的? 首先在controller启动的时候会打开一个scheduler, if (config.autoLeaderRebalanceEnable) { //如果打开outoLeaderRebalance,需要把partiton leader由于dead而发生迁徙的,重新迁徙回去 info("starting the partition rebalan