用 Tensorflow 建立 CNN

稍稍乱入的CNN,本文依然是学习周莫烦视频的笔记。

还有 google 在 udacity 上的 CNN 教程。

CNN(Convolutional Neural Networks) 卷积神经网络简单讲就是把一个图片的数据传递给CNN,原涂层是由RGB组成,然后CNN把它的厚度加厚,长宽变小,每做一层都这样被拉长,最后形成一个分类器:

如果想要分成十类的话,那么就会有0到9这十个位置,这个数据属于哪一类就在哪个位置上是1,而在其它位置上为零。

在 RGB 这个层,每一次把一块核心抽出来,然后厚度加厚,长宽变小,形成分类器:

在 CNN 中有几个重要的概念:

  • stride
  • padding
  • pooling

stride,就是每跨多少步抽取信息。每一块抽取一部分信息,长宽就缩减,但是厚度增加。抽取的各个小块儿,再把它们合并起来,就变成一个压缩后的立方体。

padding,抽取的方式有两种,一种是抽取后的长和宽缩减,另一种是抽取后的长和宽和原来的一样。

pooling,就是当跨步比较大的时候,它会漏掉一些重要的信息,为了解决这样的问题,就加上一层叫pooling,事先把这些必要的信息存储起来,然后再变成压缩后的层:

patch, 就是小方块的长宽的像素,in size 是image的厚度为1,out size是输出的厚度为32:

CNN的结构,分析一张图片时,先放一个CNN的图层,再把这个图层进行一个pooling。这样可以比较好的保持信息,之后再加第二层的CNN和pooling。

导入一个图片之后,先是有它的RGB三个图层,然后把像素块缩小变厚。本来有三个厚度,然后把它变成八个厚度,它的长宽在不断的减小,最后把它们连接在一起:

下面就是用 tensorflow 构建一个 CNN 的代码,
里面主要有4个layer,分别是:

  1. convolutional layer1 + max pooling;
  2. convolutional layer2 + max pooling;
  3. fully connected layer1 + dropout;
  4. fully connected layer2 to prediction.
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets(‘MNIST_data‘, one_hot=True)

def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result

# 产生随机变量,符合 normal 分布
# 传递 shape 就可以返回weight和bias的变量
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)                            

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 定义2维的 convolutional 图层
def conv2d(x, W):
    # stride [1, x_movement, y_movement, 1]
    # Must have strides[0] = strides[3] = 1
    # strides 就是跨多大步抽取信息
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=‘SAME‘)        

# 定义 pooling 图层
def max_pool_2x2(x):
    # stride [1, x_movement, y_movement, 1]
    # 用pooling对付跨步大丢失信息问题
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding=‘SAME‘)        

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784])         # 784=28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])            # 最后一个1表示数据是黑白的
# print(x_image.shape)  # [n_samples, 28,28,1]

## 1. conv1 layer ##
#  把x_image的厚度1加厚变成了32
W_conv1 = weight_variable([5, 5, 1, 32])                 # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
# 构建第一个convolutional层,外面再加一个非线性化的处理relu
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)             # output size 28x28x32
# 经过pooling后,长宽缩小为14x14
h_pool1 = max_pool_2x2(h_conv1)                                     # output size 14x14x32

## 2. conv2 layer ##
# 把厚度32加厚变成了64
W_conv2 = weight_variable([5,5, 32, 64])                 # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
# 构建第二个convolutional层
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)             # output size 14x14x64
# 经过pooling后,长宽缩小为7x7
h_pool2 = max_pool_2x2(h_conv2)                                     # output size 7x7x64

## 3. func1 layer ##
# 飞的更高变成1024
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
# 把pooling后的结果变平
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

## 4. func2 layer ##
# 最后一层,输入1024,输出size 10,用 softmax 计算概率进行分类的处理
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))       # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

sess = tf.Session()
# important step
sess.run(tf.initialize_all_variables())

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    if i % 50 == 0:
        print(compute_accuracy(
            mnist.test.images, mnist.test.labels))

转自:http://www.jianshu.com/p/e2f62043d02b
时间: 2024-10-11 00:13:17

用 Tensorflow 建立 CNN的相关文章

基于tensorflow的CNN卷积神经网络对Fasion-MNIST数据集的分类器

写一个基于tensorflow的cnn,分类fasion-MNIST数据集 这个就是fasion-mnist数据集了 先上代码,在分析: import tensorflow as tf import pandas as pd import numpy as np config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.3 train_data = pd.read_csv('test.csv'

Tensorflow的CNN教程解析

之前的博客我们已经对RNN模型有了个粗略的了解.作为一个时序性模型,RNN的强大不需要我在这里重复了.今天,让我们来看看除了RNN外另一个特殊的,同时也是广为人知的强大的神经网络模型,即CNN模型.今天的讨论主要是基于Tensorflow的CIFAR10教程,不过作为对比,我们也会对Tensorflow的MINST教程作解析以及对比.很快大家就会发现,逻辑上考虑,其实内容都是大同小异的.由于所对应的目标不一样,在数据处理方面可能存在着些许差异,这里我们以CIFAR10的为基准,有兴趣的朋友欢迎去

第三节,TensorFlow 使用CNN实现手写数字识别

上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,着一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]

莫烦tensorflow(8)-CNN

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 datamnist = input_data.read_data_sets('MNIST_data',one_hot=True) def compute_accuracy(v_xs,v_ys): global prediction y_pre = sess.run(prediction,feed_dict

TensorFlow(3)CNN中的函数

tf.nn.conv2d()函数 参数介绍: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input:输入参数,具有这样的shape[batch, in_height, in_width, in_channels],分别是[batch张图片, 每张图片高度为in_height, 每张图片宽度为in_width, 图像通道为in_channels]. filter:滤波器,滤波器的s

Tensorflow之CNN卷积层池化层padding规则

padding的规则 ·        padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例) 输出宽度:output_width = (in_width-filter_width+1)/strides_width  =(5-3+1)/2=1.5[向上取整=2] 输出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/2=1.5[向上取整=2] 输出的形状[1,2,2,1] imp

用tensorflow搭cnn - notes

一次进步一点点,滴水穿石头...估计我也老了 上一层的feature maps被一个可学习的卷积核进行卷积 mj是输入的点, 对于每一个输出对点,都有一个完全不同对卷积核 所以我猜, W就是这里的k, 是要学习和更新的权重,一个卷积核就是一块区域(4x4=16)对应一个核(16个参数),再加上一个b 两个核就是会生成两个不同的output点,两个不同的核,参数又翻倍 如果stride=1,那么一个32x32的图片就有,28x28个小区域,每个区域3个卷积核的话,就有28x28x3x16个参数,爆

TensorFlow实战之CNN实现对鸡蛋的分类

本文标签: TensorFlow TensorFlow实战之CNN 3.1问题分析 为了评估N个鸡蛋中是否有圈养鸡蛋,我们利用卷积神经网络(CNN)让计算机学习圈养鸡蛋和土鸡蛋图片的特征,然后根据鸡蛋的图片将其分类.通过对图片的预处理,将其转化为32*32相同大小的图片.在神经网络加载数据之后,会将其转化为32*32*3的数组.然后通过卷积和池化等一系列操作提取出图片的特征.以达到对鸡蛋进行分类的目的.我们主要用Python语言在TensorFlow中构建卷积神经网络(CNN),让CNN学习圈养

CNN+ Auto-Encoder 实现无监督Sentence Embedding ( 基于Tensorflow)

原文链接:http://tecdat.cn/?p=9322 前言 这篇文章会利用到上一篇: 基于Spark /Tensorflow使用CNN处理NLP的尝试的数据预处理部分,也就是如何将任意一段长度的话表征为一个2维数组. 本文完整的代码在这: autoencoder-sentence-similarity.py 基本思路是,通过编码解码网络(有点类似微软之前提出的对偶学习),先对句子进行编码,然后进行解码,解码后的语句要和原来的句子尽可能的接近.训练完成后,我们就可以将任意一个句子进行编码为一