POJ 1141 —— Brackets Sequence

题目:http://poj.org/problem?id=1141

区间DP + 构造出DP的解

这里有两种思路都是对的:

  第一种(推荐):dp[i][j] := 区间i~j最少需要加多少字符使得它符合括号匹配,然后构造出一个DP的解就好了

  第二种:dp[i][j] := 区间i~j符合括号匹配的最长子序列的长度,然后在构造最长子序列的过程中标记哪些字符本身就已经匹配完毕了,然后对剩下的进行补全就好了 

第一种:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
using namespace std;

char s[105];
int dp[105][105];
int c[105][105];

void dfs(int i, int j)
{
    if(i>j)    return;
    if(c[i][j] == -1)    {
        if(s[i] == ‘[‘ || s[i] == ‘]‘)    printf("%s", "[]");
        else    printf("%s", "()");
        dfs(i+1, j);
    } else {
        int k = c[i][j];
        printf("%c", s[i]);
        dfs(i+1, k-1);
        printf("%c", s[k]);
        dfs(k+1, j);
    }
}

int main ()
{
    scanf("%s", s);
    int len = strlen(s);
    for(int step=0; step<len; step++) {
        for(int i=0; i+step<len; i++) {
            int j = i + step;
            dp[i][j] = dp[i+1][j]+1;
            c[i][j] = -1;
            for(int k=i+1; k<=j; k++) {
                if(s[i]==‘(‘ && s[k]==‘)‘ || s[i]==‘[‘ && s[k]==‘]‘) {
                    if(dp[i+1][k-1]+dp[k+1][j] < dp[i][j]) {
                        dp[i][j] = dp[i+1][k-1]+dp[k+1][j];
                        c[i][j] = k;
                    }
                }
            }

        }
    }
//    printf("%d\n", dp[0][len-1]);
    dfs(0, len-1);
    printf("\n");
    return 0;
} 

第二种:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
using namespace std;

char s[105];
int dp[105][105], c[105][105];
bool vis[105];

void dfs(int i, int j)
{
    if(i>=j)    return;
    if(c[i][j]==-1)    dfs(i+1, j);
    else {
        int k = c[i][j];
        vis[i] = vis[k] = 1;
        dfs(i+1, k-1);
        dfs(k+1, j);
    }
}

int main ()
{
    scanf("%s", s);
    int len = strlen(s);
    for(int step=1; step<len; step++) {
        for(int i=0; i+step<len; i++) {
            int j = i + step;
            dp[i][j] = dp[i+1][j];
            c[i][j] = -1;
            for(int k=i+1; k<=j; k++) {
                if(s[i]==‘(‘ && s[k]==‘)‘ || s[i]==‘[‘ && s[k]==‘]‘) {
                    if(dp[i+1][k-1]+dp[k+1][j]+2 > dp[i][j]) {
                        dp[i][j] = dp[i+1][k-1]+dp[k+1][j]+2;
                        c[i][j] = k;
                    }
                }
            }
        }
    }
    dfs(0, len-1);

    for(int i=0; i<len; i++) {
        if(vis[i]) {
            printf("%c", s[i]);
        } else {
            if(s[i] == ‘[‘ || s[i] == ‘]‘)    printf("%s", "[]");
            else    printf("%s", "()");
        }
    }
    printf("\n");
    return 0;
} 
时间: 2024-10-11 16:21:01

POJ 1141 —— Brackets Sequence的相关文章

uva1626 poj 1141 Brackets Sequence 区间dp 打印路径

// poj 1141 Brackets Sequence // 也是在紫书上看的一题,uva就是多了一个t组数据. // 经典区间dp // dp(i,j)表示区间[i,j]内所需要增加的括号数目 // 则分为两种情况 // 一种是s[i]和s[j]是匹配的则 // dp[i][j] = min(dp[i][j],dp[i+1][j-1]) // 另外一种情况是不匹配 // dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]){i<k<j}; // 但是无

[ACM] POJ 1141 Brackets Sequence (区间动态规划)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25087   Accepted: 7069   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

POJ 1141 Brackets Sequence (区间dp 记录路径)

题目大意: 给出一种不合法的括号序列,要求构造出一种合法的序列,使得填充的括号最少. 思路分析: 如果只要求输出最少的匹配括号的数量,那么就是简单的区间dp dp[i][j]表示 i - j 之间已经合法了最少添加的括号数. 转移 就是 dp[i] [j] = min  (dp[i+1][j]+1 , dp[ i+ 1] [ k -1 ] + dp[k+1] [j] (i k 位置的括号匹配)) 其次我们要记录路径,你发现  如果 dp [i] [j] 是由 dp [i+1] [j] 转移过来的

POJ #1141 - Brackets Sequence - TODO: POJ website issue

A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most"\"least" problems can be solved using DP.. Reference: http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html There's an important details to AC:

POJ 1141 Brackets Sequence (线性dp 括号匹配 经典题)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26407   Accepted: 7443   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence (区间DP)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25893   Accepted: 7295   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

区间DP [POJ 1141] Brackets Sequence

Brackets Sequence Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, th

POJ 1141 Brackets Sequence (区间DP)

Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, then AB is a regular

poj 1141 Brackets Sequence

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32662   Accepted: 9441   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence dp

 Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, then AB is a regu