题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5014
Number Sequence
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 681 Accepted Submission(s): 321
Special Judge
Problem Description
There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:
● ai ∈ [0,n]
● ai ≠ aj( i ≠ j )
For sequence a and sequence b, the integrating degree t is defined as follows(“⊕” denotes exclusive or):
t = (a0 ⊕ b0) + (a1 ⊕ b1) +···+ (an ⊕ bn)
(sequence B should also satisfy the rules described above)
Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
Input
There are multiple test cases. Please process till EOF.
For each case, the first line contains an integer n(1 ≤ n ≤ 105), The second line contains a0,a1,a2,...,an.
Output
For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b0,b1,b2,...,bn. There is exactly one space between bi
and bi+1(0 ≤ i ≤ n - 1). Don’t ouput any spaces after bn.
Sample Input
4 2 0 1 4 3
Sample Output
20 1 0 2 3 4
Source
2014 ACM/ICPC Asia Regional Xi‘an Online
思路: 网上已经有很多解题报告了,解法都差不多,给定一个数n,求这n+1个数与另外n+1个数相匹配求最大的异或值之和;
可以发现规律: 从n开始遍历到0,让每个值都找到另一个“互补”的值,比如 :n=9,那么就有10个数,最大的是9,其二进制表示为1001,那么它就应该与0110匹配~
(一定得从最大值n开始遍历,才符合贪心的正确性)
#include <iostream> #include <stdio.h> #include <string.h> #include <string> #include <cstdio> #include <cmath> const int N=1e5+100; using namespace std; int hash[N]; int a[N]; int main() { int n; while(cin>>n) { for(int i=1;i<=n+1;i++) { scanf("%d",&a[i]); } memset(hash,-1,sizeof(hash)); for(int i=n;i>=0;i--) //将n个数从大到小排列进行位处理,使得“互补”,这样异或值才是最大的; { if(hash[i]>-1)continue; int sum=0,cnt=1,s=i; while(s) { int t=(s&1)^1; sum+=t*cnt; cnt*=2; s/=2; } hash[i]=sum; hash[sum]=i; } printf("%I64d\n",(long long )n*n+n); for(int i=1;i<=n+1;i++) { if(i==1)printf("%d",hash[a[i]]); else printf(" %d",hash[a[i]]); } printf("\n"); } return 0; }