深度学习--torch安装

一、查看cuda及cudnn版本

  cat /usr/local/cuda/version.txt

  cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

二、官网链接

  http://pytorch.org/

  支持三种安装方式,conda,pip 以及source

时间: 2024-10-24 03:57:17

深度学习--torch安装的相关文章

基于scikitlearn的深度学习环境安装(三)(完整版)

OS Linux  Ubuntu14.04 安装 pip (python2.7.9或以上自带pip) sudo apt-get install python-pip pip是python环境下安装包的总的管理工具 相对于easy install使用更加的方便一些 尝试安装scikit-neuralnetwork  需要theano  scipy  numpy sudo  pip install scikit-neuralnetwork(出现错误  无法编译 先尝试下面一步) sudo apt-g

1.深度学习之安装教程

在centos5下安装TensorFlow. 步骤: 1.安装python3.5 2.安装pip3,同时建立软链接. 3.安装TensorFlow,pip install --upgrade tensorflow 出现问题: 1./lib64/libc.so.6:version GLIBC_2.14not found 解决办法:

[深度学习]TensorFlow安装

virtualenv 可以用来建立一个专属于项目的python环境,保持一个干净的环境.只需要通过命令创建一个虚拟环境,不用的时候通过命令退出,删除.实践证明用虚拟环境能避免很多糟心的事. 下面介绍一下安装方法: 安装 virtualenv; 安装 virtualenvwrapper; 安装 Numpy,Scipy,Matplotlib 等Python科学计算的库; 1.安装 virtualenv $ sudo pip install virtualenv 然后建立一个测试目录: $ mkdir

深度学习框架keras平台搭建(关键字:windows、非GPU、离线安装)

当下,人工智能越来越受到人们的关注,而这很大程度上都归功于深度学习的迅猛发展.人工智能和不同产业之间的成功跨界对传统产业产生着深刻的影响. 最近,我也开始不断接触深度学习,之前也看了很多文章介绍,对深度学习的历史发展以及相关理论知识也有大致了解. 但常言道:纸上得来终觉浅,绝知此事要躬行:与其临渊羡鱼,不如退而结网.因此决定自己动手玩一玩. 对比了当下众多流行框架的优缺点,以及结合自身硬件条件,最后选定keras框架作为入手点. 作为大多数人都习惯于Windows系统,此外由于GPU比较昂贵,本

手把手教你搭建深度学习平台——避坑安装theano+CUDA

python有多混乱我就不多说了.这个混论不仅是指整个python市场混乱,更混乱的还有python的各种附加依赖包.为了一劳永逸解决python的各种依赖包对深度学习造成的影响,本文中采用python的发行版Anaconda. Step1 安装Anaconda 这里不建议使用python3.4以后的Anaconda版本,因为太新的版本(python3.5)不支持python/matlab混合编程.所以为了以后方便,建议使用python2.7的Anaconda版本.Anaconda安装完成后,n

深度学习框架之TensorFlow的概念及安装(ubuntu下基于pip的安装,IDE为Pycharm)

2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源. 1.TensorFlow的概念 TensorFlow 是使用数据流图进行数值计算的开源软件库.也就是说,TensorFlow 使用图(graph)来表示计算任务.图中的节点表示数学运算,边表示运算之间用来交流的多维数组(也就是tensor,张量).TensorFlow 灵活的架构使得你可以将计算过程部署到一个或多个CPU或GPU上. TensorFlow 最初是由 Google Brain Team 的研究人员和

MXNet 学习 (1) --- 最易上手的深度学习开源库 --- 安装及环境搭建

安装环境:Win 10 专业版 64位 + Visual Studio 2015 Community. 记录下自己在有GPU的环境下安装配置MXNet的过程.该过程直接使用MXNet release 的 pre-built 包,没有自己使用CMake编译.网上有很多自己编译的教程,过程都比较繁琐,直接使用release包对新手来说更加简单方便. 选择MXNet的原因是因为看了<Caffe.TensorFlow.MXNet三个开源库的对比>这篇博文,其中指出MXNet相对来说是最易上手的深度学习

深度学习框架Caffe的编译安装

深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最新的版本 BLAS via ATLAS, MKL, or OpenBLAS. Boost >= 1.55 protobuf, glog, gflags, hdf5 可选依赖软件包: OpenCV >= 2.4 including 3.0 IO libraries: lmdb, leveldb (n

微软的深度学习框架cntk ,我目前见过 安装方式最简单的一个框架,2.0之后开始支持C# 咯

wiki:https://github.com/Microsoft/CNTK/wiki 嗨,你也是我这种手残党么?之前试着安装着mxnet和tensorflow,但是因为时间比较短所以往往来不及安装完就失去兴趣,今天看到微软的cntk可以用了,一次性安装好了,并且测试通过 本人环境: Windows 7 X64 8G内存 下载链接 官方安装说明:https://github.com/Microsoft/CNTK/wiki/Setup-Windows-Binary-Script 用以上链接下载了安