FFT的应用

FFT的应用

概述

FFT的模板很简单,大家都会背,于是出题的空间就在于建模了。FFT的题目难在建模,往往需要将问题抽象出来,经过一系列转化后得到乘积式的和,再赋予式子各个项的系数一定的意义即可。

基本形式

对于类似\(\sum_{i+j=N+k}a_ib_j\)的式子,可以直接通过FFT计算。
其中N是定值,表示元素个数;k是变量,是题目中的系数,a和b是间接已知数组,当a与b的系数和为定值时,可将一个翻转,否则直接计算。

例题:P3723?[AH2017/HNOI2017]礼物

直接计算卷积

一些问题经过简单的推导即可推出可以用计算卷积来解决,这类问题多形如对所有不大于\(n\)的\(k\)求出某个东西,其中\(k\)的答案为求某个卷积后结果数组的第\(k\)项。

例题:CF993E

给出一个大小为\(n\)的数组\(a\)和一个数\(x\),对于\(0\)和\(n\)之间的所有\(k\),求有多少个\(a\)的区间中恰有\(k\)个数小于\(x\)。
\(1\leq n\leq 2 \times 10^5, -10^9\leq x,ai \leq 10^9\)

多项式运算

多项式乘法可以用来表示卷积,而借助多项式的性质,可以分析并解决类型更为广泛的问题。其中,最典型的例子是利用生成函数解决组合计数问题,这往往可以简化推导过程,有时还可以借助专用算法优化复杂度。

字符串匹配

代通配符的字符串匹配

设\(s,t\)为字符串,其中\(t\)中某些字符是通配符,可以匹配任意字符,求\(s\)在\(t\)中的所有匹配的位置。将通配符设为\(0\),其余字符设为非\(0\)的数,则\(s\)在\(k\)处匹配当且仅当
\[\sum_{0\leq i < |s|}t_{i+k}(s_i-t_{i+k})^2=0\]
结合计算卷积,很容易算出左式,即可完成匹配

模板:P4173 残缺的字符串

要求匹配两个字符串A,B,两者都有通配符

\[\sum_{0\leq i < |s|}t_{i+k}s_i(s_i-t_{i+k})^2=0\]

例题:CF528D Fuzzy Search

给出字符串\(s,t\)和非负整数\(d\),求有多少个\(k\),满足对于所有\(s\)的下标\(i\),都存在距离\(k+i\) 不大于\(d\)的\(j\),使得\(s_i = t_j\)。\(1\leq |s|,|t|, k\leq 2\times 10^5\),字符集大小为\(4\)。

原文地址:https://www.cnblogs.com/guoshaoyang/p/11296027.html

时间: 2024-10-05 05:49:54

FFT的应用的相关文章

XJTUOJ wmq的A&#215;B Problem FFT

wmq的A×B Problem 发布时间: 2017年4月9日 17:06   最后更新: 2017年4月9日 17:07   时间限制: 3000ms   内存限制: 512M 描述 这是一个非常简单的问题. wmq如今开始学习乘法了!他为了训练自己的乘法计算能力,写出了n个整数,并且对每两个数a,b都求出了它们的乘积a×b.现在他想知道,在求出的n(n−1)2个乘积中,除以给定的质数m余数为k(0≤k<m)的有多少个. 输入 第一行为测试数据的组数. 对于每组测试数据,第一行为2个正整数n,

对AM信号FFT的matlab仿真

普通调幅波AM的频谱,大信号包络检波频谱分析 u(t)=Ucm(1+macos ?t)cos ?ct ma称为调幅系数 它的频谱由载波,上下边频组成 , 包络检波中二极管截去负半周再用电容低通滤波,可以得到基带信号,那么,截去负半周后的AM信号必定包含基带信号的频谱.我们可以通过matlab来验证. %已知基带信号为1hz,载波为64hz,调制系数ma=0.3,采样频率1024hz,FFT变换区间N为2048 clear; fs=1024; f=1; %1hz基带信号 fc=64; %64hz载

多项式FFT相关模板

自己码了一个模板...有点辛苦...常数十分大,小心使用 #include <iostream> #include <stdio.h> #include <math.h> #include <string.h> #include <time.h> #include <stdlib.h> #include <algorithm> #include <vector> using namespace std; #de

多项式艺术:浅谈FFT和NTT算法(未完待续)

什么是多项式? 百度百科说:“由若干个单项式相加组成的代数式叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.” 也就是说,形如的式子,就叫做多项式.这样的式子,也能写作.很显然,多项式加上(或是减上)多项式也是多项式,复杂度是的.但是,如果多项式想要乘上一个多项式,那么也可以,最简单的方法却是的. 不过,FFT算法会告诉你,就够了. 多项式乘法 我们说的,多项式想要乘上一个多项式,那就是多项式乘法,人称“卷积”.我们方才所看到的,被称为多项式的“系数表

FFT模板(From MG)

1 #include<cstdio> 2 #include<cmath> 3 #include<algorithm> 4 using namespace std; 5 struct cp{double x,y;}; 6 int n1,n2,n,m; 7 double pi=acos(-1); 8 cp a[500010],b[500010],cur[500010]; 9 cp operator *(cp x,cp y){return (cp){x.x*y.x-x.y*y

Bzoj2179 FFT快速傅立叶

Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3079  Solved: 1581 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出一行,即x*y的结果. Sample Input 1 3 4 Sample Output 12 数据范围: n<=60000 HINT Source FFT FFT真

BZOJ 2194 快速傅立叶之二 ——FFT

[题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代码] #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <map> #include <set> #include <

BZOJ 2179 FFT快速傅立叶 ——FFT

[题目分析] 快速傅里叶变换用于高精度乘法. 其实本质就是循环卷积的计算,也就是多项式的乘法. 两次蝴蝶变换. 二进制取反化递归为迭代. 单位根的巧妙取值,是的复杂度成为了nlogn 范德蒙矩阵计算逆矩阵又减轻了拉格朗日插值法的复杂度. 十分神奇. [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #includ

MATLAB中fft

一般的fft需要将点数补成2的整数次幂,MATLAB中有fft函数,输入N点序列则输出也是N点序列,其中N不一定为2的整数次幂.所以会疑惑MATLAB做的fft和N点序列对应的dft是否一样.经过验证,MATLAB中对N点序列做fft的结果与N点dft的结果是完全一样的,没有对N点序列进行补0后再做操作. 下面是MATLAB代码和结果. n = 0: 49; A = 444.128; a = 50 * sqrt(2.0) * pi; w0 = 50 * sqrt(2.0) * pi; T = 0

FFT及NTT学习

贴上学习FFT和NTT的资料,以后再补题吧 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform#i-15 http://blog.csdn.net/acdreamers/article/details/39005227 http://blog.csdn.net/acdreamers/article/details/39026505