如何设计可以动态扩容缩容的分库分表方案

停机扩容(不推荐)

这个方案就跟停机迁移一样,步骤几乎一致,唯一的一点就是那个导数的工具,是把现有库表的数据抽出来慢慢倒入到新的库和表里去。但是最好别这么玩儿,有点不太靠谱,因为既然分库分表就说明数据量实在是太大了,可能多达几亿条,甚至几十亿,你这么玩儿,可能会出问题。

从单库单表迁移到分库分表的时候,数据量并不是很大,单表最大也就两三千万。那么你写个工具,多弄几台机器并行跑,1小时数据就导完了。这没有问题。

如果 3 个库 + 12 个表,跑了一段时间了,数据量都 1~2 亿了。光是导 2 亿数据,都要导个几个小时,6 点,刚刚导完数据,还要搞后续的修改配置,重启系统,测试验证,10 点才可以搞完。所以不能这么搞。

优化后的方案

一开始上来就是 32 个库,每个库 32 个表,那么总共是 1024 张表。

我可以告诉各位同学,这个分法,第一,基本上国内的互联网肯定都是够用了,第二,无论是并发支撑还是数据量支撑都没问题。

每个库正常承载的写入并发量是 1000,那么 32 个库就可以承载32 * 1000 = 32000 的写并发,如果每个库承载 1500 的写并发,32 * 1500 = 48000 的写并发,接近 5 万每秒的写入并发,前面再加一个MQ,削峰,每秒写入 MQ 8 万条数据,每秒消费 5 万条数据。

有些除非是国内排名非常靠前的这些公司,他们的最核心的系统的数据库,可能会出现几百台数据库的这么一个规模,128个库,256个库,512个库。

1024 张表,假设每个表放 500 万数据,在 MySQL 里可以放 50 亿条数据。

每秒 5 万的写并发,总共 50 亿条数据,对于国内大部分的互联网公司来说,其实一般来说都够了。

谈分库分表的扩容,第一次分库分表,就一次性给他分个够,32 个库,1024 张表,可能对大部分的中小型互联网公司来说,已经可以支撑好几年了。

一个实践是利用 32 * 32 来分库分表,即分为 32 个库,每个库里一个表分为 32 张表。一共就是 1024 张表。根据某个 id 先根据 32 取模路由到库,再根据 32 取模路由到库里的表。

orderId id % 32 (库) id / 32 % 32 (表)
259 3 8
1189 5 5
352 0 11
4593 17 15

刚开始的时候,这个库可能就是逻辑库,建在一个数据库上的,就是一个mysql服务器可能建了 n 个库,比如 32 个库。后面如果要拆分,就是不断在库和 mysql 服务器之间做迁移就可以了。然后系统配合改一下配置即可。

比如说最多可以扩展到32个数据库服务器,每个数据库服务器是一个库。如果还是不够?最多可以扩展到 1024 个数据库服务器,每个数据库服务器上面一个库一个表。因为最多是1024个表。

这么搞,是不用自己写代码做数据迁移的,都交给 dba 来搞好了,但是 dba 确实是需要做一些库表迁移的工作,但是总比你自己写代码,然后抽数据导数据来的效率高得多吧。

哪怕是要减少库的数量,也很简单,其实说白了就是按倍数缩容就可以了,然后修改一下路由规则。

这里对步骤做一个总结:

  1. 设定好几台数据库服务器,每台服务器上几个库,每个库多少个表,推荐是 32库 * 32表,对于大部分公司来说,可能几年都够了。
  2. 路由的规则,orderId 模 32 = 库,orderId / 32 模 32 = 表
  3. 扩容的时候,申请增加更多的数据库服务器,装好 mysql,呈倍数扩容,4 台服务器,扩到 8 台服务器,再到 16 台服务器。
  4. 由 dba 负责将原先数据库服务器的库,迁移到新的数据库服务器上去,库迁移是有一些便捷的工具的。
  5. 我们这边就是修改一下配置,调整迁移的库所在数据库服务器的地址。
  6. 重新发布系统,上线,原先的路由规则变都不用变,直接可以基于 n 倍的数据库服务器的资源,继续进行线上系统的提供服务。

原文地址:https://www.cnblogs.com/windpoplar/p/10926523.html

时间: 2024-11-10 15:28:49

如何设计可以动态扩容缩容的分库分表方案的相关文章

如何设计可以动态扩容缩容的分库分表方案?

对于分库分表来说,主要是面对以下问题: 选择一个数据库中间件,调研.学习.测试: 设计你的分库分表的一个方案,你要分成多少个库,每个库分成多少个表,比如 3 个库,每个库 4 个表: 基于选择好的数据库中间件,以及在测试环境建立好的分库分表的环境,然后测试一下能否正常进行分库分表的读写: 完成单库单表到分库分表的迁移,双写方案: 线上系统开始基于分库分表对外提供服务: 扩容了,扩容成 6 个库,每个库需要 12 个表,你怎么来增加更多库和表呢? 是你必须面对的一个事儿,就是你已经弄好分库分表方案

如何设计动态扩容缩容的分库分表方案?

面试官:如何来设计动态扩容的分库分表方案?面试官心理剖析:这个问题主要是看看你们公司设计的分库分表设计方案怎么样的?你知不知道动态扩容的方案? 回答: 背景说明:如果你们公司之前已经做了分库分表,你们当时分了 4 个库,每个库 4 张表:公司业务发展的很好,现在的数据库已经开始吃力了,不能满足快速发展的业务量了,需要进行扩容. 1)停机扩容 这个方案跟单库迁移方案是一样的,就是停服进行数据迁移,不过现在的数据迁移比之前的单库迁移要复杂的多,还有数据量也是之前的好几倍,单库的数据量可能就几千万,但

分库分布的几件小事(三)可以动态扩容缩容的分库分表方案

1.扩容与缩容 这个是你必须面对的一个事儿,就是你已经弄好分库分表方案了,然后一堆库和表都建好了,基于分库分表中间件的代码开发啥的都好了,测试都ok了,数据能均匀分布到各个库和各个表里去,而且接着你还通过双写的方案咔嚓一下上了系统,已经直接基于分库分表方案在搞了. 那么现在问题来了,你现在这些库和表又支撑不住了,要继续扩容咋办?这个可能就是说你的每个库的容量又快满了,或者是你的表数据量又太大了,也可能是你每个库的写并发太高了,你得继续扩容. 缩容就是现在业务不景气了,数据量减少,并发量下降,那么

[转]一种可以避免数据迁移的分库分表scale-out扩容方式

原文地址:http://jm-blog.aliapp.com/?p=590 目前绝大多数应用采取的两种分库分表规则 mod方式 dayofweek系列日期方式(所有星期1的数据在一个库/表,或所有?月份的数据在一个库表) 这两种方式有个本质的特点,就是离散性加周期性. 例如以一个表的主键对3取余数的方式分库或分表: 那么随着数据量的增大,每个表或库的数据量都是各自增长.当一个表或库的数据量增长到了一个极限,要加库或加表的时候, 介于这种分库分表算法的离散性,必需要做数据迁移才能完成.例如从3个扩

数据库-数据库设计-分库分表

为什么要分库分表 分库分表的设计 带来的问题 扩容 分布式事务 多个路由字段怎么设置 关于分库分表最全的一篇文章 这里介绍设计分库分表框架时应该考虑的设计要点,并给出相应的解决方案. 一.整体的切分方式 简单来说,数据的切分就是通过某种特定的条件,将我们存放在同一个数据库中的数据分散存放到多个数据库(主机)中,以达到分散单台设备负载的效果,即分库分表. 数据的切分根据其切分规则的类型,可以分为如下两种切分模式. 垂直(纵向)切分:把单一的表拆分成多个表,并分散到不同的数据库(主机)上. 水平(横

Kubernetes高级进阶之pod的自动扩容/缩容

目录:实践1:基于autoscaling cpu指标的扩容与缩容实践2:基于prometheus自定义指标QPS的扩容与缩容 Pod自动扩容/缩容(HPA) Horizontal Pod Autoscaler(HPA,Pod水平自动伸缩),根据资源利用率或者自定义指标自动调整replication controller, deployment 或 replica set,实现部署的自动扩展和缩减,让部署的规模接近于实际服务的负载.HPA不适于无法缩放的对象,例如DaemonSet. HPA主要是

数据库分库分表(sharding)系列(五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案

作为一种数据存储层面上的水平伸缩解决方案,数据库Sharding技术由来已久,很多海量数据系统在其发展演进的历程中都曾经历过分库分表的Sharding改造阶段.简单地说,Sharding就是将原来单一数据库按照一定的规则进行切分,把数据分散到多台物理机(我们称之为Shard)上存储,从而突破单机限制,使系统能以Scale-Out的方式应对不断上涨的海量数据,但是这种切分对上层应用来说是透明的,多个物理上分布的数据库在逻辑上依然是一个库.实现Sharding需要解决一系列关键的技术问题,这些问题主

DB层面上的设计 分库分表 读写分离 集群化 负载均衡

第1章  引言 随着互联网应用的广泛普及,海量数据的存储和访问成为了系统设计的瓶颈问题.对于一个大型的 互联网应用,每天几十亿的PV无疑对数据库造成了相当高的负载.对于系统的稳定性和扩展性造成了极大的问题.通过数据切分来提高网站性能,横向扩展数据层 已经成为架构研发人员首选的方式.水平切分数据库,可以降低单台机器的负载,同时最大限度的降低了了宕机造成的损失.通过负载均衡策略,有效的降低了单台 机器的访问负载,降低了宕机的可能性:通过集群方案,解决了数据库宕机带来的单点数据库不能访问的问题:通过读

数据库表设计的随笔(分库分表)

笔者目前就职的是一家创业型的互联网公司,既然算是互联网公司,那么就会设计到无论是应用系统还是数据库的分布式.下面简单介绍下有关数据库方面的一些设计. 数据库表的设计,根据自己的业务所需可以拆分成多库.有订单库.产品库.账户库.底层支付库等等,这也就是传说中的垂直分库.那么数据库架构和数据库优化有哪些解决思路: 1.垂直分表.垂直分表也就是“一张表拆分成多张表”,比如订单表里面,有不同类型的订单,拿普通订单和一元夺宝订单来说,一元夺宝订单会有抽奖码中奖吗等等,这些是一元夺宝订单独有的,就可以单独拿