转载地址:http://blog.csdn.net/kangroger/article/details/37742639
回文是指正着读和倒着读,结果一些样,比如abcba或abba。
题目是要在一个字符串中要到最长的回文子串。
1、暴力法
最容易想到的就是暴力破解,求出每一个子串,之后判断是不是回文,找到最长的那个。
求每一个子串时间复杂度O(N^2),判断子串是不是回文O(N),两者是相乘关系,所以时间复杂度为O(N^3)。
string findLongestPalindrome(string &s) { int length=s.size();//字符串长度 int maxlength=0;//最长回文字符串长度 int start;//最长回文字符串起始地址 for(int i=0;i<length;i++)//起始地址 for(int j=i+1;j<length;j++)//结束地址 { int tmp1,tmp2; for(tmp1=i,tmp2=j;tmp1<tmp2;tmp1++,tmp2--)//判断是不是回文 { if(s.at(tmp1)!=s.at(tmp2)) break; } if(tmp1>=tmp2&&j-i>maxlength) { maxlength=j-i+1; start=i; } } if(maxlength>0) return s.substr(start,maxlength);//求子串 return NULL; }
2、动态规划
回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文字符串,那么P[i+1,j-1]也是回文字符串。这样最长回文子串就能分解成一系列子问题了。这样需要额外的空间O(N^2),算法复杂度也是O(N^2)。
首先定义状态方程和转移方程:
P[i,j]=0表示子串[i,j]不是回文串。P[i,j]=1表示子串[i,j]是回文串。
P[i,i]=1
P[i,j]{=P[i+1,j-1],if(s[i]==s[j])
=0 ,if(s[i]!=s[j])
string findLongestPalindrome(string &s) { const int length=s.size(); int maxlength=0; int start; bool P[50][50]={false}; for(int i=0;i<length;i++)//初始化准备 { P[i][i]=true; if(i<length-1&&s.at(i)==s.at(i+1)) { P[i][i+1]=true; start=i; maxlength=2; } } for(int len=3;len<length;len++)//子串长度 for(int i=0;i<=length-len;i++)//子串起始地址 { int j=i+len-1;//子串结束地址 if(P[i+1][j-1]&&s.at(i)==s.at(j)) { P[i][j]=true; maxlength=len; start=i; } } if(maxlength>=2) return s.substr(start,maxlength); return NULL; }
3、中心扩展
中心扩展就是把给定的字符串的每一个字母当做中心,向两边扩展,这样来找最长的子回文串。算法复杂度为O(N^2)。
但是要考虑两种情况:
1、像aba,这样长度为奇数。
2、想abba,这样长度为偶数。
string findLongestPalindrome(string &s) { const int length=s.size(); int maxlength=0; int start; for(int i=0;i<length;i++)//长度为奇数 { int j=i-1,k=i+1; while(j>=0&&k<length&&s.at(j)==s.at(k)) { if(k-j+1>maxlength) { maxlength=k-j+1; start=j; } j--; k++; } } for(int i=0;i<length;i++)//长度为偶数 { int j=i,k=i+1; while(j>=0&&k<length&&s.at(j)==s.at(k)) { if(k-j+1>maxlength) { maxlength=k-j+1; start=j; } j--; k++; } } if(maxlength>0) return s.substr(start,maxlength); return NULL; }
4、Manacher法
Manacher 法只能解决例如aba这样长度为奇数的回文串,对于abba这样的不能解决,于是就在里面添加特殊字符。我是添加了“#”,使abba变为 a#b#b#a。这个算法就是利用已有回文串的对称性来计算的,具体算法复杂度为O(N),我没看出来,因为有两个嵌套的for循环。
具体原理参考这里。
测试代码中我没过滤掉“#”。
#define min(x, y) ((x)<(y)?(x):(y)) #define max(x, y) ((x)<(y)?(y):(x)) string findLongestPalindrome3(string s) { int length=s.size(); for(int i=0,k=1;i<length-1;i++)//给字符串添加 # { s.insert(k,"#"); k=k+2; } length=length*2-1;//添加#后字符串长度 int *rad=new int[length](); rad[0]=0; for(int i=1,j=1,k;i<length;i=i+k) { while(i-j>=0&&i+j<length&&s.at(i-j)==s.at(i+j)) j++; rad[i]=j-1; for(k=1;k<=rad[i]&&rad[i-k]!=rad[i]-k;k++)//镜像,遇到rad[i-k]=rad[i]-k停止,这时不用从j=1开始比较 rad[i+k]=min(rad[i-k],rad[i]-k); j=max(j-k,0);//更新j } int max=0; int center; for(int i=0;i<length;i++) { if(rad[i]>max) { max=rad[i]; center=i; } } return s.substr(center-max,2*max+1); }
时间: 2024-10-20 18:15:48