关于斐波那契数列的一点规律 --14年蓝桥杯试题



问题描述

  斐波那契数列大家都非常熟悉。它的定义是:

  f(x) = 1 .... (x=1,2)
  f(x) = f(x-1) + f(x-2) .... (x>2)

  对于给定的整数 n 和 m,我们希望求出:
  f(1) + f(2) + ... + f(n) 的值。但这个值可能非常大,所以我们把它对 f(m) 取模。
  公式如下

  但这个数字依然很大,所以需要再对 p 求模。

输入格式

  输入为一行用空格分开的整数 n m p (0 < n, m, p < 10^18)

输出格式

  输出为1个整数,表示答案

样例输入

2 3 5

样例输出

0

样例输入

15 11 29

样例输出

25


首先我们设S(i)= f(1)+f(2)+...+f(i);

题干中已经告诉我们n取值很大时S(n)有可能非常大,所以不可能直接算出来

题干又进一步提示说S(n)对f(m)取模,然后进一步对p取模

我们能够直接算出的只有f(n)

所以这个题很自然的思路就是通过f(n)的表达式来表示出取模之后的结果

所以我们需要寻找S(n)和f(n)之间的关系。

事实上:s(n)=f(n+2)-1 (i>0)

我们可以通过最原始的方式,查看规律(证明可用数学归纳法,有待学习、、)

Thinking:

设f(i)为斐波那契数列第i项,s(i)=f(1)+f(2)+...+f(i),

i  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

f(i) 1  1  2  3  5  8 13 21 34  55  89  144 233 377 610

s(i) 1  2  4  7 12 20 33 54 88 143 232  376 609 ... ...

得到公式之后,继续分析本题,可知

s(i)%f(m)=(f(i+2)-1)%f(m)

=f(i+2)%f(m)+f(m)-1

=(f(i)+f(i+1))%f(m)+f(m)-1;

代码待续...

时间: 2024-10-08 05:34:47

关于斐波那契数列的一点规律 --14年蓝桥杯试题的相关文章

HDU 4639 Hehe(字符串处理,斐波纳契数列,找规律)

题目 //每次for循环的时候总是会忘记最后一段,真是白痴.... //连续的he的个数 种数 //0 1 //1 1 //2 2 //3 3 //4 5 //5 8 //…… …… //斐波纳契数列 //不连续的就用相乘(组合数)好了 #include<iostream> #include<algorithm> #include<string> #include <stdio.h> #include <string.h> #include &l

关于斐波那契数列的一点小结

斐波那契数列就是0,1,1,2,3,5……这样的一波数列,第三个数是前两个数的和. 兔子问题,上楼梯的台阶方法的个数问题,都是斐波那契数列. 斐波那契可以简单的用递归实现: 1 def fib(n) 2 # Calculate the nth Fibonacci Number 3 return n if n == 0 || n == 1 4 return fib(n-1) + fib(n-2) 5 end 简单有效,但是在n很大的时候时间长. 也可以用迭代来实现 1 def fib(n) 2 r

【笔试】1、斐波拉契数列

/* * 题目:题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死, 问每个月的兔子总数为多少? * 时间:2015年7月27日08:47:08 * 文件:lianxi01.cpp * 作者:cutter_point */ #include <iostream> #include <fstream> using namespace std; int main() { ifstream input("li

java程序员到底该不该了解一点算法(一个简单的递归计算斐波那契数列的案例说明算法对程序的重要性)

为什么说 “算法是程序的灵魂这句话一点也不为过”,请看下面这个简单的案例 1 package recursion; 2 3 import java.util.HashMap; 4 import java.util.Map; 5 6 import org.junit.Test; 7 8 /** 9 * @author: MengXianman 10 * @creationTime: 2017年11月27日 上午9:47:51 11 * @description: 斐波那契数列结合备忘录算法的简单使

每日一九度之 题目1075:斐波那契数列

时间限制:5 秒 内存限制:32 兆 特殊判题:否 提交:3517 解决:2028 题目描述: 编写一个求斐波那契数列的递归函数,输入n值,使用该递归函数,输出如样例输出的斐波那契数列. 输入: 一个整型数n 输出: 题目可能有多组不同的测试数据,对于每组输入数据, 按题目的要求输出相应的斐波那契图形. 样例输入: 6 样例输出: 0 0 1 1 0 1 1 2 3 0 1 1 2 3 5 8 0 1 1 2 3 5 8 13 21 0 1 1 2 3 5 8 13 21 34 55 这题可以直

斐波拉契数列的计算方法

面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long Fib(unsigned int n) { if(n<=0) return 0; if(n==1) return 1; return Fib(n-1) + Fib(n-2); } 缺陷: 当n比较大时递归非常慢,因为递归过程中存在很多重复计算. 二.改进思路: 应该采用非递归算法,保存之前的计算结

斐波那契数列,冒泡排序,选择排序,数组去重

斐波那契数列: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以<斐波纳契数列季刊>为名的一份数学杂志,用于专门刊载这方面的研究成果. 这个数列从第二项开始,每一项都等于前两项之和. function abc(num){

斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - 1) + F(n - 2),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F(0) = 1. 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod 1000000007. 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为

求斐波那契数列的第n项值——9

写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 0            n = 0 F(n) =  1            n = 1 F(n-1)+F(n-2)    n > 1 也就是斐波那契数列为{0,1,1,2,3,5,8,13,21,......F(n-1)+F(n-2)}: 首先可以想到,因为要求第n个斐波那契数,就需要知道第n-1和第n-2个斐波那契数,而求第n-1个斐波那契数就需要知道第n-2个和第n-3个斐波那契数,第n-2个斐波