Web Service 大数据量网络传输处理

Web Service 大数据量网络传输处理的相关文章

解决WCF大数据量传输 ,System.Net.Sockets.SocketException: 远程主机强迫关闭了一个现有的连接

开发中所用的数据需要通过WCF进行数据传输,结果就遇到了WCF大量传输问题 也就是提示System.Net.Sockets.SocketException: 远程主机强迫关闭了一个现有的连接 网上解决方案都是千篇一律互相转发的,并且没有明确的解决方案或者按照,各个博客中的解决方案都没能解决这个问题. 为此我整整浪费了一天时间用来解决这个问题,而且用了最笨的办法一点点的尝试网上所查到的方案.对于精研WCF来说的这可能是一个小问题,但是对于仅仅了解wcf,一知半解的会很困惑.将解决方案贴出来希望能帮

大数据量传输时配置WCF的注意事项

原文:大数据量传输时配置WCF的注意事项 WCF传输数据量的能力受到许多因素的制约,如果程序中出现因需要传输的数据量较大而导致调用WCF服务失败的问题,应注意以下配置: 1.MaxReceivedMessageSize:获取或设置配置了此绑定的通道上可以接收的消息的最大大小. basicHttpBinding等预定义的绑定一般具有MaxReceivedMessageSize属性,CustomBinding则需要在Transport中定义. 示例代码: <bindings> <custom

WCF大数据量传输解决方案

文章内容列表:1. 场景:2. 解决方案3. WCF契约与服务实现设计静态图4. WCF契约与服务实现设计详细说明6. 服务端启动服务代码:7. 客户端代码8.   WCF大数据量传输解决方案源码下载 1. 场景: WCF在网络传输中,大数据量传输造成网络阻塞,宽带无法承受: 2. 解决方案 解决WCF在网络传输中的大数据量问题: A.需要把相关数据序列化成字节流,再对字节流进行压缩,再进行传输,到了客户端再做反向操作便可获得原始数据. B.如果压缩后的数据仍然较大时,可以再压缩流后,再对流进行

关于webservice大数据量传输时的压缩和解压缩

当访问WebSerivice时,如果数据量很大,传输数据时就会很慢.为了提高速度,我们就会想到对数据进行压缩.首先我们来分析一下. 当在webserice中传输数据时,一般都采用Dataset进行数据传输.执行的过程就是先把Dataset转化为xml进行传输,Dataset转化为xml的格式如下: [html] view plaincopy <DataSetName> <DataTableName> <Column1Name>.......</Column1Nam

大数据量时Mysql的优化

(转自网络) 如今随着互联网的发展,数据的量级也是撑指数的增长,从GB到TB到PB.对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数据的需求.这个时候NoSQL的出现暂时解决了这一危机.它通过降低数据的安全性,减少对事务的支持,减少对复杂查询的支持,来获取性能上的提升.但是,在有些场合NoSQL一些折衷是无法满足使用场景的,就比如有些使用场景是绝对要有事务与安全指标的.这个时候NoSQL肯定是无法满足的,所以还是需要使用关系性数据库. 虽然关系型数据库在海量数据中逊

WebService处理大数据量数据

在通过WebService处理大数据量数据时出现如下错误: soap fault: 运行配置文件中指定的扩展时出现异常. ---> 超过了最大请求长度. 解决方法: 因为上传的文件大于系统默认配置的值,asp.net web service默认的请求长度是4M. 1.针对单个项目,只需修改Web.config就可以了: 修改配置可以在web.config中重新设置,如下:<configuration><system.web><httpRuntime maxRequest

大数据量下的高并发分布式访问控制(ACL)优化方案(一)

目前的设计方案 1.1.控制计数: 在目前的项目中,有很多接口需要对访问方进行权限访问控制.目前设计方案是:利用redis集群来存储每个访问控制点的访问计数信息.Key值为=PlatformId(接入平台方)+InterfaceId(系统接口)+dayTime(日期时间),value值为当天每个时段的访问次数统计列表. 1.2.控制规则: 通过页面配置并制定控制规则.业务系统在启动时加载控制规则,并访问redis获取控制次数,然后在业务系统中做逻辑判断完成,ACL控制做请求拦截处理. 目前的痛点

大数据量高并发的数据库优化

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

大并发大数据量请求的处理方法

大并发大数据量请求一般会分为几种情况: 1.大量的用户同时对系统的不同功能页面进行查找,更新操作 2.大量的用户同时对系统的同一个页面,同一个表的大数据量进行查询操作 3.大量的用户同时对系统的同一个页面,同一个表进行更新操作 对于第一种情况一般处理方法如下: 一.对服务器层面的处理 1. 调整IIS 7应用程序池队列长度 由原来的默认1000改为65535. IIS Manager > ApplicationPools > Advanced Settings Queue Length : 6