Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 21 elements in this set.
How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?
统计2-1000000之间每个数的欧拉函数
#include <iostream> using namespace std; int getEuler(int n) { int m = n; int p = 2; int k = 0; while (p*p <= n) { k = 0; while (n%p == 0) { n /= p; k++; } if (k >= 1) m = m / p*(p - 1); p++; } if (n > 1) m = m / n*(n - 1); return m; } int main() { unsigned long long count = 0; for (int i = 2; i <= 1000000; i++) { count += getEuler(i); } cout << count << endl; system("pause"); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-10-29 03:22:39