DS18B20测温原理及逻辑时序

DS18B20测温原理:

图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,

DS18B20内部的低温度系数振荡器是一个振荡频率随温度变化很小的振荡器,为计数器1提供一频率稳定的计数脉冲。

高温度系数振荡器是一个振荡频率对温度很敏感的振荡器,为计数器2提供一个频率随温度变化的计数脉冲。

初始时,温度寄存器被预置成-55℃,每当计数器1从预置数开始减计数到0时,温度寄存器中寄存的温度值就增加1℃,这个过程重复进行,直到计数器2计数到0时便停止。

DS18B20工作过程一般遵循以下协议:初始化——ROM操作命令——存储器操作命令——处理数据

① 初始化

单总线上的所有处理均从初始化序列开始。初始化序列包括总线主机发出一复位脉冲,接着由从属器件送出存在脉冲。存在脉冲让总线控制器知道DS1820 在总线上且已准备好操作。

② ROM操作命令

一旦总线主机检测到从属器件的存在,它便可以发出器件ROM操作命令之一。所有ROM操作命令均为8位长。这些命令列表如下:

Read ROM(读ROM)[33h]

此命令允许总线主机读DS18B20的8位产品系列编码,唯一的48位序列号,以及8位的CRC。此命令只能在总线上仅有一个DS18B20的情况下可以使用。如果总线上存在多于一个的从属器件,那么当所有从片企图同时发送时将发生数据冲突的现象(漏极开路会产生线与的结果)。

Match ROM( 符合ROM)[55h]

此命令后继以64位的ROM数据序列,允许总线主机对多点总线上特定的DS18B20寻址。只有与64位ROM序列严格相符的DS18B20才能对后继的存贮器操作命令作出响应。所有与64位ROM序列不符的从片将等待复位脉冲。此命令在总线上有单个或多个器件的情况下均可使用。

Skip ROM( 跳过ROM )[CCh]

在单点总线系统中,此命令通过允许总线主机不提供64位ROM编码而访问存储器操作来节省时间。如果在总线上存在多于一个的从属器件而且在Skip ROM命令之后发出读命令,那么由于多个从片同时发送数据,会在总线上发生数据冲突(漏极开路下拉会产生线与的效果)。

Search ROM( 搜索ROM)[F0h]

当系统开始工作时,总线主机可能不知道单线总线上的器件个数或者不知道其64位ROM编码。搜索ROM命令允许总线控制器用排除法识别总线上的所有从机的64位编码。

Alarm Search(告警搜索)[ECh]

此命令的流程与搜索ROM命令相同。但是,仅在最近一次温度测量出现告警的情况下,DS18B20才对此命令作出响应。告警的条件定义为温度高于TH 或低于TL。只要DS18B20一上电,告警条件就保持在设置状态,直到另一次温度测量显示出非告警值或者改变TH或TL的设置,使得测量值再一次位于允许的范围之内。贮存在EEPROM内的触发器值用于告警。

③ 存储器操作命令

Write Scratchpad(写暂存存储器)[4Eh]

这个命令向DS18B20的暂存器中写入数据,开始位置在地址2。接下来写入的两个字节将被存到暂存器中的地址位置2和3。可以在任何时刻发出复位命令来中止写入。

Read Scratchpad(读暂存存储器)[BEh]

这个命令读取暂存器的内容。读取将从字节0开始,一直进行下去,直到第9(字节8,CRC)字节读完。如果不想读完所有字节,控制器可以在任何时间发出复位命令来中止读取。

Copy Scratchpad(复制暂存存储器)[48h]

这条命令把暂存器的内容拷贝到DS18B20的E2存储器里,即把温度报警触发字节存入非易失性存储器里。如果总线控制器在这条命令之后跟着发出读时间隙,而DS18B20又正在忙于把暂存器拷贝到E2存储器,DS18B20就会输出一个“0”,如果拷贝结束的话,DS18B20 则输出“1”。如果使用寄生电源,总线控制器必须在这条命令发出后立即起动强上拉并最少保持10ms。

Convert T(温度变换)[44h]

这条命令启动一次温度转换而无需其他数据。温度转换命令被执行,而后DS18B20保持等待状态。如果总线控制器在这条命令之后跟着发出读时间隙,而DS18B20又忙于做时间转换的话,DS18B20将在总线上输出“0”,若温度转换完成,则输出“1”。如果使用寄生电源,总线控制器必须在发出这条命令后立即起动强上拉,并保持500ms。

Recall E2(重新调整E2)[B8h]

这条命令把贮存在E2中温度触发器的值重新调至暂存存储器。这种重新调出的操作在对DS18B20上电时也自动发生,因此只要器件一上电,暂存存储器内就有了有效的数据。在这条命令发出之后,对于所发出的第一个读数据时间片,器件会输出温度转换忙的标识:“0”=忙,“1”=准备就绪。

Read Power Supply(读电源)[B4h]

对于在此命令发送至DS18B20之后所发出的第一读数据的时间片,器件都会给出其电源方式的信号:“0”=寄生电源供电,“1”=外部电源供电。

④ 处理数据

DS18B20的高速暂存存储器由9个字节组成,其分配如图3所示。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第0和第1个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后。

时间: 2024-10-09 20:26:23

DS18B20测温原理及逻辑时序的相关文章

基于51单片机DS18B20测温LCD1602显示可设时设温调时的项目

一.前言 1.基于51单片机DS18B20测温LCD1602显示可设时设温调时的项目包括用Keil软件编写单片机C语言程序和用Proteus软件仿真单片机外围电路 2.基于51单片机DS18B20测温LCD1602显示可设时设温调时的项目构思 (1).声明程序变量思维导图 (2).程序子函数思维导图 (3).程序主函数思维导图 二.基于51单片机DS18B20测温LCD1602显示可设时设温调时的项目的Keil软件编写的单片机C语言程序 1 #include<reg52.h>//声明51单片机

基于51单片机的无线测温系统

本51项目基于STC89C52MCU,温度传感器为DS18B20,显示模块用的是LCD1602,无线模块用的是Nodemcu. 项目用到的编程语言:C,C++,Lua. 实现思路是这样,DS18B20测温,然后数据串行传送给51单片机,然后51通过串口将数据传送给Nodemcu,Nodemcu通过其WIFI模块将数据发送给上位机,上位机上的程序是用Qt编写的GUI.(这里无线传输采用的是无连接的UDP协议) 1.DS18B20温度测量模块 DS18B20是单总线器件,所以时序要求非常严格,程序编

利用单片机实现极简单的测温电路(转)

源:http://www.sinochip.net/TechSheet/67.htm 参考:http://www.docin.com/p-281643435.html 利用单片机实现极简单的测温电路 单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制,但那些温度检测与控制电路通常较复杂,成本也高,本文提供了一种低成本的利用单片机多余I/O口实现的温度检测电路,该电路非常简单,且易于实现,并且适用于几乎所有类型的单片机.其电路如下图所示: 图中: P1.0.P1.

Linux高可用集群方案之heartbeat基础原理及逻辑架构

 这篇文章我们主要学习heartbeat高可用集群的基础原理及逻辑架构,以及heartbeat的简单配置  ll  本文导航    · heartbeat之基本原理   · heartbeat之集群组件   · heartbeat之心跳连接   · heartbeat之脑裂(资源争用.资源隔离) · heartbeat之配置文件   · heartbeat至高可用集群配置  ll  要求  掌握heartbeat高可用集群的相关组件及简单配置   heartbeat之基本原理  heartbea

燃太TN901红外测温模块LCD1602显示

山远的博客 学以致用 首页 旧版 首页 标签 留言本 单片机 文学 趣闻 美图 C#编程 燃太TN901红外测温模块LCD1602显示 燃太TN901红外测温模块LCD1602显示,可设置高温低温报警. 手工焊接电路板,使用STC89C52RC 单片机控制,红外测温模块非接触式测温. 可以设置高温和低温报警. 测量温度超出范围,蜂鸣器发出声音报警,两个指示灯分别表示高温和低温. Tags: TN901 红外测温模块 LCD1602 温度报警

Arduino 负温度系数热敏电阻(NTC)测温

一直都用NTC作为温度传感器来测温,采用Arduino没有现成的例子用NTC测温的,LM35D温度传感器,这款传感器能够测量0-100摄氏度的温度,并以电压的数值输出.从0度开始温度每升高1度输出电压就会提高10mv.而NTC则不然,NTC根据温度变化产生电阻阻值变化,而且是非线性的变化,这就需要用上拉电阻或下拉电阻来选择分辨率较好的区间. #define Pot A2 //电位器引脚命名 int PotBuffer = 0; //AD读取数据缓存变量 void setup() { Serial

[MSP430]实战 ADC使用, 内部测温使用

首先说说问题, 感觉这个Code Compose Studio 比较奇怪 #include "TFT\TFT_Driver.h" 找不到文件, 无法打开 没有include 仅在同一工程下就可以使用函数 每次运行程序结果不同 下面给出一个使用ADC的实例: ADC初始化函数: void ConfigureAdcTempSensor(void) { /* Configure ADC Temp Sensor Channel */ ADC10CTL1 = INCH_10 + ADC10DIV

千万别相信鲁大师的硬件测温和CPU测温功能!!

很多人本来随手安装的一个软件, 相信也信任得过它 , 这下让我测试对它失望了,没想到鲁大师这个测温功能实在太搓了!! 白白浪费了我一晚上,  搞来了硅胶 ,弄了几遍  , 还是一样, 还以为买了水货 !!就差点换风扇了 . 后来才发现是鲁某的问题 ! ψ(╰_╯) 不多说 直接上专业软件 AIDA64 和 Real Temp 与 鲁大屎 的真相对比图 ! 鲁某已经上90度报警 , 而身边两个软件还是50度左右. 这个是最新版的, 另外我换了一个老版本也同样有这个问题 . 搞了一晚上,  以后再也

测温补偿测试程序

#include<stdio.h>#include<math.h>#define uchar unsigned char#define R1 10000 // the value of standard resistor is 10000#define c 0.0001// theroy current#define Vref 2.5//refrence voltage#define PGA 2//gain char *Hex="0123456789ABCDEF"