隐马尔科夫模型(HMM)及其实现

马尔科夫模型

马尔科夫模型是单重随机过程,是一个2元组:(S,A)。

其中S是状态集合,A是状态转移矩阵。

只用状态转移来描述随机过程。

马尔科夫模型的2个假设

有限历史性假设:t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;

齐次性假设:从t时刻到t+l时刻的状态转移与t的值无关。

以天气模型为例

天气变化有3中状态S:{1(阴),2(云),3(晴)}

图片来自网络

则状态转移矩阵A:

这样,只要知道的初始状态概率向量,就能预测接下来每天的天气了。

隐马尔科夫模型

隐马尔科夫模型是双重随机过程,是一个5元组:

V是输出集合。

表示在状态j时输出k的概率。

是初始状态概率。

用状态转移和输出概率一起来描述随机过程。

以扔硬币模型为例

有个小孩手上拿着3个各不相同,也正反不均匀的硬币。他每次随机抽取1个硬币扔,扔了很多次(比如10次),他并不告诉你他每次抽中的是哪个硬币。但是他会告诉你每次的正反结果:正正反正反正正正……

在这个问题中,我们知道观察序列(硬币的正反),但是小孩手上硬币类型的变换序列被隐藏起来了,我们不知道小孩每次拿的哪个硬币扔,因此是双重随机过程。这就隐马尔科夫过程。

这里假设模型参数已知:

A=[0.90.05 0.05;0.45 0.1 0.45;0.45 0.45 0.1];
B=[0.50.75 0.25;0.5 0.25 0.75];
Pi=[1/31/3 1/3]';

隐马尔科夫模型的3个问题

1.【概率问题】给定上述模型,观察到[正正反]的概率是多少?

O=[11 2];

2.【预测问题】给定上述模型,如果观察到上述结果,最可能的硬币转换序列(状态转换序列)是什么?

3.【学习问题】不告诉你模型参数,如何根据观察序列得到它们?

【概率问题】

1.向前算法

向前变量:给定模型,在时刻t,状态为i,且之前的观察序列如下的概率。

显然有

Alpha=zeros(3,N);
Beta=zeros(3,N);
Lambda=zeros(3,N);

Alpha(:,1)=B(O(1),:)'.*Pi;
Delta=Alpha;
fori=2:N
    Alpha(:,i)=A'*Alpha(:,i-1).*B(O(i),:)';
end
Q1_1=sum(Alpha(:,N));

输出

Alpha=
0.166666666666667      0.150000000000000      0.0867187500000000
0.250000000000000      0.0531250000000000    0.00683593750000000
0.0833333333333333    0.0322916666666667    0.0259765625000000

Q1_1=0.119531250000000

2.向后算法

向后变量:给定模型,在时刻t,状态为i,且之后的观察序列如下的概率。

显然有

Beta(:,N)=ones(N,1);
fori=N:-1:2
   Beta(:,i-1)=bsxfun(@times,A,B(O(i),:))*Beta(:,i);
end
Q1_2=sum(Pi.*B(1,:)'.*Beta(:,1));

输出

Beta=
0.252187500000000      0.500000000000000      1
0.202968750000000      0.587500000000000      1
0.321093750000000      0.412500000000000      1

Q1_2=0.119531250000000

【预测问题】

Viterbi算法

Viterbi变量:给定模型,在时刻t,状态为i,观察到的最佳转换序列为的概率。

显然有

这里需要把最佳路径记录下来

Q2=zeros(1,N);
fori=2:N
    Delta(:,i)=max(bsxfun(@times,A,Delta(:,i-1)))'.*B(O(i),:)';
   [~,Lambda(:,i)]=max(bsxfun(@times,A,Delta(:,i-1)));
end
[~,Q2(N)]=max(Delta(:,N));
fori=N:-1:2
    Q2(i-1)=Lambda(Q2(i),i);
end

输出

Delta=
0.166666666666667      0.0750000000000000    0.0337500000000000
0.250000000000000      0.0281250000000000    0.00316406250000000
0.0833333333333333    0.0281250000000000    0.00949218750000000

最优序列

1     1     1

【学习问题】

1.有监督模式

在有大量标签数据下,直接用频率近似概率参数即可。

2.无监督模式

Baum-Welch算法

定义变量:在给定模型和观察序列O,在t时刻状态为i,在t+1时刻状态为j的概率

则关于模型参数的一种估计方法为

欢迎参与讨论并关注本博客微博以及知乎个人主页后续内容继续更新哦~

转载请您尊重作者的劳动,完整保留上述文字以及文章链接,谢谢您的支持!

时间: 2024-10-27 11:45:01

隐马尔科夫模型(HMM)及其实现的相关文章

隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测

七月算法-12月机器学习在线班--第十七次课笔记-隐马尔科夫模型HMM

七月算法-12月机器学习--第十七次课笔记-隐马尔科夫模型HMM 七月算法(julyedu.com)12月机器学习在线班学习笔记http://www.julyedu.com 隐马尔科夫模型 三个部分:概率计算,参数估计,模型预测 1,HMM定义 HMM由初始概率分布π.状态转移概率分布A以及观测概率分布B确定. Eg:以中文分词为例子 隐状态为="2",是不是终止字,是/否?(Y/N)即是不是最后一个字. A矩阵:第一个:当前是终止字,下一个也是终止字的概率 B是当前的隐状态是终止词,

隐马尔科夫模型HMM

隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析.在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小然而在图像识别等领域HMM依然起着重要的作用. 引言: 隐马尔科夫模型是马尔科夫链的一种,它

隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在隐马尔科夫模型HMM(一)HMM模型中,我们讲到了HMM模型的基础知识和HMM的三个基本问题,本篇我们就关注于HMM第一个基本问题的解决方法,即已知模型和观测序列,求观测序列出现的概率. 1. 回顾HMM问题一:求观测序列的概率 首先我们回顾下HMM模型的问题一.这个

隐马尔科夫模型HMM(一)HMM模型

隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率(TODO) 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,它在语言识别,自然语言处理,模式识别等领域得到广泛的应用.当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下

隐马尔科夫模型 HMM(Hidden Markov Model)

本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定这个大名鼎鼎的模型,也省着之后遇到再费心. Outline 模型引入与背景介绍 从概率图讲起 贝叶斯网络.马尔科夫模型.马尔科夫过程.马尔科夫网络.条件随机场 HMM的形式化表示 Markov Model的形式化表示 HMM的形式化表示 HMM的两个基本假设 HMM的三个基本问题 Evalution

【ML-13-1】隐马尔科夫模型HMM

[ML-13-1]隐马尔科夫模型HMM [ML-13-2]隐马尔科夫模型HMM--前向后向算法 [ML-13-3]隐马尔科夫模型HMM--Baum-Welch(鲍姆-韦尔奇) [ML-13-4]隐马尔科夫模型HMM--预测问题Viterbi(维特比)算法 目录 基础知识-马尔可夫链 HMM简介 HMM定义 HMM模型的三个基本问题 举例 一.基础知识-马尔可夫链 1.1 马尔可夫性质 设{X(t), t ∈ T}是一个随机过程,E为其状态空间,若对于任意的t1<t2< ...<tn<

隐马尔科夫模型(HMM)

基本概念 1Markov Models 2Hidden Markov Models 3概率计算算法前向后向算法 1-3-1直接计算 1-3-2前向算法 1-3-3后向算法 4学习问题Baum-Welch算法也就是EM算法 5预测算法 基本概念 1.1Markov Models 处理顺序数据的最简单的方式是忽略顺序的性质,将观测看做独立同分布,然而这样无法利用观测之间的相关性.例如:预测下明天是否会下雨,所有数据看成独立同分布只能得到雨天的相对频率,而实际中,我们知道天气会呈现持续若干天的趋势,观

通俗理解隐马尔科夫模型HMM(转载)

作者:Yang Eninala 链接:https://www.zhihu.com/question/20962240/answer/33438846 来源:知乎 著作权归作者所有,转载请联系作者获得授权. 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书卖的一样

HMM隐马尔科夫模型

马尔科夫过程 在概率论及统计学中,马尔可夫过程(英语:Markov process)是一个具备了马尔可夫性质的随机过程,因为俄国数学家安德雷·马尔可夫得名.马尔可夫过程是不具备记忆特质的(memorylessness).换言之,马尔可夫过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态,都是独立.不相关的. 一个马尔科夫过程是状态间的转移仅依赖于前n个状态的过程.这个过程被称之为n阶马尔科夫模型,其中n是影响下一个状态选择的(前)n个状态.最简单的马尔科夫过程是一阶模型,它的状态