poj 2749 Building roads (二分+拆点+2-sat)


Building roads

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 6229   Accepted: 2093

Description

Farmer John‘s farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2
roads, which is so costly that cheapskate John will never do that, though that‘s the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair
of barns will be connected by the roads. To make the cows don‘t spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That‘s not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can‘t connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their
barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must
decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1
- y2|.

Input

The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends
with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

Output

You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.

Sample Input

4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3

Sample Output

53246

Source

POJ Monthly--2006.01.22,zhucheng

题意:

有 N 个牛栏,如今通过一条通道(s1,s2)把他们连起来,他们之间有一些约束关系,一些牛栏不能连在同一个点,一些牛栏必须连在同一个点,如今问有没有可能把他们都连好,并且满足全部的约束关系,假设能够,输出两个牛栏之间距离最大值的最小情况。

思路:

二分枚举最长距离。用2SAT推断可行与否。最后输出答案,假设没有,那么输出-1

条件1   i,j  相互讨厌,  <i,j+n>  <i+n,j>  <j,i+n>  <j+n,i>

条件2   i,j   关系好       <i,j> <j,i> <j+n,i+n> <i+n,j+n>

条件3

1:dis(i,s1) + dis(j,s1)>m     <i,j+n>  <j,i+n>

2:i j都连s2的时候与上面类似

3:dis(i,s1)+dis(s1,s2)+dis(s2,j)>m   <i,j>  <j+n,i+n>

4:i连s2 j连s1条件与上面类似

代码:

#include <cstdio>
#include <cstring>
#define INF 0x3f3f3f3f
#define maxn 1005
#define MAXN 4000005
using namespace std;

int n,m1,m2,num,flag,ans,tot;
int head[maxn],X[2005],Y[2005],dist1[maxn],dist2[maxn];
int scc[maxn];
int vis[maxn];
int stack1[maxn];
int stack2[maxn];
struct edge
{
    int v,next;
} g[MAXN];

void init()
{
    memset(head,0,sizeof(head));
    memset(vis,0,sizeof(vis));
    memset(scc,0,sizeof(scc));
    stack1[0] = stack2[0] = num = 0;
    flag = 1;
}
void addedge(int u,int v)
{
    num++;
    g[num].v = v;
    g[num].next = head[u];
    head[u] = num;
}
int abs(int x)
{
    if(x>=0) return x;
    return -x;
}
int caldist(int x1,int y1,int x2,int y2)
{
    return abs(x1-x2)+abs(y1-y2);
}
void dfs(int cur,int &sig,int &cnt)
{
    if(!flag) return;
    vis[cur] = ++sig;
    stack1[++stack1[0]] = cur;
    stack2[++stack2[0]] = cur;
    for(int i = head[cur]; i; i = g[i].next)
    {
        if(!vis[g[i].v]) dfs(g[i].v,sig,cnt);
        else
        {
            if(!scc[g[i].v])
            {
                while(vis[stack2[stack2[0]]] > vis[g[i].v])
                    stack2[0] --;
            }
        }
    }
    if(stack2[stack2[0]] == cur)
    {
        stack2[0] --;
        ++cnt;
        do
        {
            scc[stack1[stack1[0]]] = cnt;
            int tmp = stack1[stack1[0]];
            if((tmp >= n && scc[tmp - n] == cnt) || (tmp < n && scc[tmp + n] == cnt))
            {
                flag = false;
                return;
            }
        }
        while(stack1[stack1[0] --] != cur);
    }
}
void Twosat()
{
    int i,sig,cnt;
    sig = cnt = 0;
    for(i=0; i<n+n&&flag; i++)
    {
        if(!vis[i]) dfs(i,sig,cnt);
    }
}
void solve()
{
    int i,j,u,v,t,le=0,ri=4000000,mid;
    ans=-1;
    while(le<=ri)
    {
        mid=(le+ri)>>1;
        init();
        num=0;
        for(i=1;i<=m1;i++)
        {
            u=X[i],v=Y[i];
            addedge(u,v+n);
            addedge(u+n,v);
            addedge(v,u+n);
            addedge(v+n,u);
        }
        for(i=m1+1;i<=m1+m2;i++)
        {
            u=X[i],v=Y[i];
            addedge(u,v);
            addedge(v,u);
            addedge(u+n,v+n);
            addedge(v+n,u+n);
        }
        for(i=0;i<n;i++)
        {
            for(j=0;j<n;j++)
            {
                if(i==j) continue ;
                if(dist1[i]+dist1[j]>mid) addedge(i,j+n);
                if(dist2[i]+dist2[j]>mid) addedge(i+n,j);
                if(dist1[i]+dist2[j]+tot>mid) addedge(i,j);
                if(dist2[i]+dist1[j]+tot>mid) addedge(i+n,j+n);
            }
        }
        Twosat();
        if(flag)
        {
            ans=mid;
            ri=mid-1;
        }
        else le=mid+1;
    }
}
int main()
{
    int i,j,t,x,y,x1,y1,x2,y2;
    while(~scanf("%d%d%d",&n,&m1,&m2))
    {
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        tot=caldist(x1,y1,x2,y2);
        for(i=0; i<n; i++)
        {
            scanf("%d%d",&x,&y);
            dist1[i]=caldist(x,y,x1,y1);
            dist2[i]=caldist(x,y,x2,y2);
        }
        for(i=1;i<=m1+m2;i++)
        {
            scanf("%d%d",&X[i],&Y[i]);
            X[i]--; Y[i]--;
        }
        solve();
        printf("%d\n",ans);
    }
    return 0;
}

poj 2749 Building roads (二分+拆点+2-sat)

时间: 2024-10-13 20:14:47

poj 2749 Building roads (二分+拆点+2-sat)的相关文章

HDU 1815, POJ 2749 Building roads(2-sat)

HDU 1815, POJ 2749 Building roads 题目链接HDU 题目链接POJ 题意: 有n个牛棚, 还有两个中转站S1和S2, S1和S2用一条路连接起来. 为了使得任意牛棚两个都可以有道路联通,现在要让每个牛棚都连接一条路到S1或者S2. 有a对牛棚互相有仇恨,所以不能让他们的路连接到同一个中转站.还有b对牛棚互相喜欢,所以他们的路必须连到同一个中专站. 道路的长度是两点的曼哈顿距离. 问最小的任意两牛棚间的距离中的最大值是多少? 思路:二分距离,考虑每两个牛棚之间4种连

poj 2749 Building roads 2-sat

题意: 给n个村庄的坐标和两个特殊点s1,s2的坐标,现在要将每个村庄连到s1或s2上,使n个村庄间的最大距离最小. 分析: 二分任意两村庄间的最大距离,用2-sat判断该最大距离是否可行,二分的时候可以顺便记录答案,不用等最后区间为空时再输出l或l-1. 代码: //poj 2749 //sep9 #include <iostream> #include <vector> using namespace std; const int maxN=1024; const int ma

POJ 2749 Building roads 2-sat+二分答案

把爱恨和最大距离视为限制条件,可以知道,最大距离和限制条件多少具有单调性 所以可以二分最大距离,加边+check 1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 #include<vector> 5 #include<stack> 6 #define N 5010 7 #define INF 4000000 8 using namespace std; 9 int di

poj 2749 Building roads(2-sat)

Description Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must bui

[poj] 2749 building roads

原题 2-SAT+二分答案! 最小的最大值,这肯定是二分答案.而我们要2-SATcheck是否在该情况下有可行解. 对于目前的答案limit,首先把爱和恨连边,然后我们n^2枚举每两个点通过判断距离来实现连边,然后跑2-SAT判断是否有可行解 O(n^2logn) 想起来和听起来都很难写,事实上还好吧- #include<cstdio> #include<algorithm> #include<stack> #include<cstring> #define

poj 3625 Building Roads

题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already conn

poj 3625 Building Roads 最小生成树(prime或kruskal+并查集)(算法归纳)

Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Description Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads;

2-SAT入门 poj2749 Building roads

poj2749 Building roads http://poj.org/problem?id=2749 二分答案,以后构造布尔表达式. 相互讨厌是!((a and b)or(!a and !b) 化简得 (!a or !b)and(a or b) 相互喜欢是!(a and !b)or(!a and b) 化简得 (!a or b)and(a or !b) 然后枚举点对讨论一个点对和S1,S2相连会不会超过lim来添加限制. 一共有四种情况都差不多,比如都连到S1会超过lim,就添加!(!a

Building roads

Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 34 Accepted Submission(s): 13   Problem Description Farmer John's farm has N barns, and there are some cows that live in each barn.