为什么说朴素贝叶斯是高偏差低方差?

首先,假设你知道训练集和测试集的关系。简单来讲是我们要在训练集上学习一个模型,然后拿到测试集去用,效果好不好要根据测试集的错误率来衡量。但很多时候,我们只能假设测试集和训练集的是符合同一个数据分布的,但却拿不到真正的测试数据。这时候怎么在只看到训练错误率的情况下,去衡量测试错误率呢?

由于训练样本很少(至少不足够多),所以通过训练集得到的模型,总不是真正正确的。(就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。而且,实际中,训练样本往往还有一定的噪音误差,所以如果太追求在训练集上的完美而采用一个很复杂的模型,会使得模型把训练集里面的误差都当成了真实的数据分布特征,从而得到错误的数据分布估计。这样的话,到了真正的测试集上就错的一塌糊涂了(这种现象叫过拟合)。但是也不能用太简单的模型,否则在数据分布比较复杂的时候,模型就不足以刻画数据分布了(体现为连在训练集上的错误率都很高,这种现象较欠拟合)。过拟合表明采用的模型比真实的数据分布更复杂,而欠拟合表示采用的模型比真实的数据分布要简单。

在统计学习框架下,大家刻画模型复杂度的时候,有这么个观点,认为Error = Bias + Variance。这里的Error大概可以理解为模型的预测错误率,是有两部分组成的,一部分是由于模型太简单而带来的估计不准确的部分(Bias),另一部分是由于模型太复杂而带来的更大的变化空间和不确定性(Variance)。

所以,这样就容易分析朴素贝叶斯了。它简单的假设了各个数据之间是无关的,是一个被严重简化了的模型。所以,对于这样一个简单模型,大部分场合都会Bias部分大于Variance部分,也就是说高偏差而低方差。

在实际中,为了让Error尽量小,我们在选择模型的时候需要平衡Bias和Variance所占的比例,也就是平衡over-fitting和under-fitting。

时间: 2024-10-06 19:58:35

为什么说朴素贝叶斯是高偏差低方差?的相关文章

NLP系列(3)_用朴素贝叶斯进行文本分类(下)

作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 http://blog.csdn.net/han_xiaoyang/article/details/50629587 声明:版权所有,转载请联系作者并注明出处 1. 引言 上一篇文章我们主要从理论上梳理了朴素贝叶斯方法进行文本分类的基本思路.这篇文章我们主要从实践上探讨一些应用过程中的tricks,并进一步分

概率--学习朴素贝叶斯分布

概率是一种基于事件发生可能性来描述未来趋势的数学工具.其本质就是通过过去已经发生的事情来推断未来事件,并且将这种推断放在一系列的公理化的数学空间当中进行考虑.例如,抛一枚均质硬币,正面向上的可能性多大?概率值是一个0-1之间的数字,用来衡量一个事件发生可能性的大小.概率值越接近于1,事件发生的可能性越大,概率值越接近于0,事件越不可能发生.天气预报员通常会使用像"明天80%的可能性会下雨"这样的术语来对降雨进行预测,这里70%或者0.7就是下雨的概率.在现实生活中,要么下雨,要么不下雨

机器学习——朴素贝叶斯(NBC)

朴素贝叶斯分类(NBC)是机器学习中最基本的分类方法,是其他众多分类算法分类性能的对比基础,其他的算法在评价性能时都在NBC的基础上进行.同时,对于所有机器学习方法,到处都蕴含着Bayes统计的思想. 朴素贝叶斯基于贝叶斯地理和特征条件独立性假设,首先基于条件独立性假设学习输入X和输出Y的联合分布P(X,Y),同时利用先验概率P(Y),根据贝叶斯定理计算出后验概率P(Y|X),找出每个类别的最大的后验概率即确定为相应的类别.算法实现简单,学习和预测的效率都很高, 基本定义 输入空间Rn为特征化的

我理解的朴素贝叶斯模型

我理解的朴素贝叶斯模型 我想说:"任何事件都是条件概率."为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础.换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率. 条件概率是朴素贝叶斯模型的基础. 假设,你的xx公司正在面临着用户流失的压力.虽然,你能计算用户整体流失的概率(流失用户数/用户总数).但这个数字并没有多大意义,因为资源是有限的,利用这个数字你只能撒胡椒面似的把钱撒在所有用户上,显然不经济.你非常想根据用户的某种行为,精确地估计一

NLP系列(4)_朴素贝叶斯实战与进阶(转)

http://blog.csdn.net/han_xiaoyang/article/details/50629608 作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶

朴素贝叶斯

一.随机变量 可以取不同的值,不同的值有不同的概率. 看到随机变量取任何值,都要想到背后有个概率,如果是连续变量,在每一点的概率是0,连续型随机变量通常只考虑概率密度. 机器学习就是通过一堆随机变量预测另一个随机变量,先假设随机变量之间的概率分布,然后从数据中估计分布的参数. 任何概率模型的假设都是简化,不能完全刻画数据,并且每个模型都有其适用范围,比如朴素贝叶斯对于文本分类效果好. 二.贝叶斯定理 贝叶斯定理给出了从一种条件概率P(B|A)怎么推到另一种条件概率P(A|B): 这个东西有什么用

机器学习(五)—朴素贝叶斯

最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素贝叶斯.本文在对朴素贝叶斯进行简单介绍之后,通过Python编程加以实现. 一  朴素贝叶斯概述                                                               1 前言 “贝叶斯”又是一个响当当的名字,刚开始接触的是贝叶斯定理.贝叶斯分类器是一类分类算法的总称,是两种最为广泛的分类模型之一,另一种就是上篇中的决策树了.贝叶斯分类均以贝叶斯定理为基础,朴素贝叶斯是

【机器学习实验】使用朴素贝叶斯进行文本的分类

引言 朴素贝叶斯由贝叶斯定理延伸而来的简单而强大的概率模型,它根据每个特征的概率确定一个对象属于某一类别的概率.该方法基于一个假设,所有特征需要相互独立,即任一特征的值和其他特征的值没有关联关系. 虽然这种条件独立的假设在许多应用领域未必能很好满足,甚至是不成立的.但这种简化的贝叶斯分类器在许多实际应用中还是得到了较好的分类精度.训练模型的过程可以看作是对相关条件概率的计算,它可以用统计对应某一类别的特征的频率来估计. 朴素贝叶斯最成功的一个应用是自然语言处理领域,自然语言处理的的数据可以看做是

Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法. 而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一个大