python学习笔记 序列化

在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:

d = dict(name=‘Bob‘, age=20, score=88)

可以随时修改变量,比如把name改成‘Bill‘,但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的‘Bill‘存储到磁盘上,下次重新运行程序,变量又被初始化为‘Bob‘

我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

Python提供了pickle模块来实现序列化。

首先,我们尝试把一个对象序列化并写入文件:

>>> import pickle
>>> d = dict(name=‘Bob‘, age=20, score=88)
>>> pickle.dumps(d)
b‘\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.‘

pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:

>>> f = open(‘dump.txt‘, ‘wb‘)
>>> pickle.dump(d, f)
>>> f.close()

看看写入的dump.txt文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。

当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:

>>> f = open(‘dump.txt‘, ‘rb‘)
>>> d = pickle.load(f)
>>> f.close()
>>> d
{‘age‘: 20, ‘score‘: 88, ‘name‘: ‘Bob‘}

变量的内容又回来了!

当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。

Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

JSON

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

JSON类型 Python类型
{} dict
[] list
"string" str
1234.56 int或float
true/false True/False
null None

Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:

>>> import json
>>> d = dict(name=‘Bob‘, age=20, score=88)
>>> json.dumps(d)
‘{"age": 20, "score": 88, "name": "Bob"}‘

dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object

要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串并反序列化:

>>> json_str = ‘{"age": 20, "score": 88, "name": "Bob"}‘
>>> json.loads(json_str)
{‘age‘: 20, ‘score‘: 88, ‘name‘: ‘Bob‘}

JSON进阶

Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:

import json

class Student(object):
    def __init__(self, name, age, score):
        self.name = name
        self.age = age
        self.score = score

s = Student(‘Bob‘, 20, 88)
print(json.dumps(s))

运行代码,毫不留情地得到一个TypeError

Traceback (most recent call last):
  ...
TypeError: <__main__.Student object at 0x10603cc50> is not JSON serializable

错误的原因是Student对象不是一个可序列化为JSON的对象。

如果连class的实例对象都无法序列化为JSON,这肯定不合理!

别急,我们仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:

https://docs.python.org/3/library/json.html#json.dumps

这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。

可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:

def student2dict(std):
    return {
        ‘name‘: std.name,
        ‘age‘: std.age,
        ‘score‘: std.score
    }

这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON:

>>> print(json.dumps(s, default=student2dict))
{"age": 20, "name": "Bob", "score": 88}

不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict

print(json.dumps(s, default=lambda obj: obj.__dict__))

因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了__slots__的class。

同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:

def dict2student(d):
    return Student(d[‘name‘], d[‘age‘], d[‘score‘])
>>> json_str = ‘{"age": 20, "score": 88, "name": "Bob"}‘
>>> print(json.loads(json_str, object_hook=dict2student))
<__main__.Student object at 0x10cd3c190>
时间: 2024-10-16 06:19:05

python学习笔记 序列化的相关文章

Python 学习笔记 - 序列化和反序列化

这一节看看在Python中如何序列化和反序列化.简单的说,序列化就是把内存中保存的数据类型转换为可以存储或者传输的过程,比如说我把一个字典转换为一个字符串这样就可以方便传递或者保存了:反序列化则是倒过来,把字符串转换为对应的数据类型. Python里面常用的有两种方式. JSON Pickle 首先来看看JSON, 例1 比如说我有一个字典如下所示: >>> import json dic={"k1":"v1"} print(dic,type(di

OpenCV之Python学习笔记

OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书<OpenCV Computer Vision with Python>,于是就看一遍,顺便把自己掌握的东西整合一下,写成学习笔记了.更需要的朋友参考. 阅读须知: 本文不是纯粹的译文,只是比较贴近原文的笔记:         请设法购买到出版社出版的书,支持正版. 从书名就能看出来本书是介绍在Pytho

python学习笔记12-模块使用

python学习笔记12-模块使用 模块os,sys 什么是模块? 模块os,sys 模块是Python组织代码的一种基本方式 一个Python脚本可以单独运行,也可以导入到另外一个脚本运行,用import hello语句来导入,不用加入.py 什么是Python的 包? Python的模块可以按照目录组织为包 创建一个包的步骤: 创建一个名字为包名的目录 在改目录下创建一个__init__.py文件 根据需要,在该目录下存放脚本文件或已编译的扩展及子包 import pack.m1,pack.

python学习笔记2—python文件类型、变量、数值、字符串、元组、列表、字典

python学习笔记2--python文件类型.变量.数值.字符串.元组.列表.字典 一.Python文件类型 1.源代码 python源代码文件以.py为扩展名,由pyton程序解释,不需要编译 [[email protected] day01]# vim 1.py #!/usr/bin/python        print 'hello world!' [[email protected] day01]# python 1.py hello world! 2.字节代码 Python源码文件

Python学习笔记--未经排版

Python 学习笔记 Python中如何做到Print() 不换行 答:Print("输出内容",end='不换行的分隔内容'),其中end=后面为2个单引号 注:在Python 2.x中,Print "输出内容", 即在输出内容后加一逗号 Python中 is 和 == 的区别 答:Python中的对象包含三要素:id.type.value 其中id用来唯一标识一个对象,type标识对象的类型,value是对象的值 is判断的是a对象是否就是b对象,是通过id来

Python学习笔记_Python对象

Python学习笔记_Python对象 Python对象 标准类型 其他内建类型 类型对象和type类型对象 Python的Null对象None 标准类型操作符 对象值的比较 对象身份比较 布尔类型 标准类型的内建函数 typeObj cmpobj1 obj2 strobj reprobj typeobj isinstanceobj 标准类型的分类 存储模型 更新模型 访问模型 不支持的类型 Python学习笔记_Python对象 首先来理解一个通俗的含义,什么是对象?其实对象无论在什么语言里面

OpenCV for Python 学习笔记 三

给源图像增加边界 cv2.copyMakeBorder(src,top, bottom, left, right ,borderType,value) src:源图像 top,bottem,left,right: 分别表示四个方向上边界的长度 borderType: 边界的类型 有以下几种: BORDER_REFLICATE # 直接用边界的颜色填充, aaaaaa | abcdefg | gggg BORDER_REFLECT # 倒映,abcdefg | gfedcbamn | nmabcd

.net学习笔记--序列化与反序列化

序列化其实就是将一个对象的所有相关的数据保存为一个二进制文件(注意:是一个对象) 而且与这个对象相关的所有类型都必须是可序列化的所以要在相关类中加上 [Serializable]特性 对象类型包括:对象本神包含的类型,父类 拥有需要的对象之后:1.将对象转换为二进制数据 使用专门的对像进行转换 BinaryFormatter 2.将二进制数据写入到文件 FileSteam 反序列化则是把二进制文件转换为一个对象 例子代码如下: 1 using System; 2 using System.Col

python 学习笔记 14 -- 常用的时间模块之datetime

书接上文,前面我们讲到<常用的时间模块之time>,这次我们学习datetime -- 日期和时间值管理模块 使用apihelper 查看datetime 模块,我们可以看到简单的几项: date       ---  日期对象,结构为date(year, month, day) time       ---  时间值对象,结构为 time([hour[, minute[, second[, microsecond[, tzinfo]]]]]).时间对象所有的参数都是可选的.tzinfo 可以