字符串匹配--kmp算法原理整理

kmp算法原理:求出P0···Pi的最大相同前后缀长度k;

字符串匹配是计算机的基本任务之一。举例,字符串"BBC ABCDAB ABCDABCDABDE",里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。

KMP算法搜索如下:

1.首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,搜索词后移一位。

2.

B与A不匹配,搜索词往后移。

3.直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,如果是将搜索词整个后移一位,再从头逐个比较。这样可行但效率很差,因为要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

2.next数组的求解思路

  通过上文完全可以对kmp算法的原理有个清晰的了解,那么下一步就是编程实现了,其中最重要的就是如何根据待匹配的模版字符串求出对应每一位的最大相同前后缀的长度。代码:

1 void makeNext(const char P[],int next[])

2 {

3     int q,k;//q:模版字符串下标;k:最大前后缀长度

4     int m = strlen(P);//模版字符串长度

5     next[0] = 0;//模版字符串的第一个字符的最大前后缀长度为0

6     for (q = 1,k = 0; q < m; ++q)//for循环,从第二个字符开始,依次计算每一个字符对应的next值

7     {

8         while(k > 0 && P[q] != P[k])//递归的求出P[0]···P[q]的最大的相同的前后缀长度k

9             k = next[k-1];          //不理解没关系看下面的分析,这个while循环是整段代码的精髓所在,确实不好理解

10         if (P[q] == P[k])//如果相等,那么最大相同前后缀长度加1

11         {

12             k++;

13         }

14         next[q] = k;

15     }

16 }

  while循环所做的工作:

  1.已知前一步计算时最大相同的前后缀长度为k(k>0),即P[0]···P[k-1];

  2.此时比较第k项P[k]与P[q],如图1所示

  3.如果P[K]等于P[q],那么很简单跳出while循环;

  4.关键!关键有木有!关键如果不等呢???那么我们应该利用已经得到的next[0]···next[k-1]来求P[0]···P[k-1]这个子串中最大相同前后缀,可能有同学要问了——为什么要求P[0]···P[k-1]的最大相同前后缀呢???是啊!为什么呢? 原因在于P[k]已经和P[q]失配了,而且P[q-k] ··· P[q-1]又与P[0] ···P[k-1]相同,看来P[0]···P[k-1]这么长的子串是用不了了,那么我要找个同样也是P[0]打头、P[k-1]结尾的子串即P[0]···P[j-1](j==next[k-1]),看看它的下一项P[j]是否能和P[q]匹配。如图2所示

附代码:

1 #include<stdio.h>

2 #include<string.h>

3 void makeNext(const char P[],int next[])

4 {

5     int q,k;

6     int m = strlen(P);

7     next[0] = 0;

8     for (q = 1,k = 0; q < m; ++q)

9     {

10         while(k > 0 && P[q] != P[k])

11             k = next[k-1];

12         if (P[q] == P[k])

13         {

14             k++;

15         }

16         next[q] = k;

17     }

18 }

19

20 int kmp(const char T[],const char P[],int next[])

21 {

22     int n,m;

23     int i,q;

24     n = strlen(T);

25     m = strlen(P);

26     makeNext(P,next);

27     for (i = 0,q = 0; i < n; ++i)

28     {

29         while(q > 0 && P[q] != T[i])

30             q = next[q-1];

31         if (P[q] == T[i])

32         {

33             q++;

34         }

35         if (q == m)

36         {

37             printf("Pattern occurs with shift:%d\n",(i-m+1));

38         }

39     }

40 }

41

42 int main()

43 {

44     int i;

45     int next[20]={0};

46     char T[] = "ababxbababcadfdsss";

47     char P[] = "abcdabd";

48     printf("%s\n",T);

49     printf("%s\n",P );

50     // makeNext(P,next);

51     kmp(T,P,next);

52     for (i = 0; i < strlen(P); ++i)

53     {

54         printf("%d ",next[i]);

55     }

56     printf("\n");

57

58     return 0;

59 }

参考:

  http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

  http://www.cnblogs.com/dolphin0520/archive/2011/08/24/2151846.html

算法导论

时间: 2024-10-03 13:39:48

字符串匹配--kmp算法原理整理的相关文章

字符串匹配KMP算法的理解(详细)

1. 引言 本KMP原文最初写于2年多前的2011年12月,因当时初次接触KMP,思路混乱导致写也写得混乱.所以一直想找机会重新写下KMP,但苦于一直以来对KMP的理解始终不够,故才迟迟没有修改本文. 然近期因开了个算法班,班上专门讲解数据结构.面试.算法,才再次仔细回顾了这个KMP,在综合了一些网友的理解.以及算法班的两位讲师朋友曹博.邹博的理解之后,写了9张PPT,发在微博上.随后,一不做二不休,索性将PPT上的内容整理到了本文之中(后来文章越写越完整,所含内容早已不再是九张PPT 那样简单

字符串匹配KMP算法C++代码实现

看到了一篇关于<字符串匹配的KMP算法>(见下文)的介绍,地址:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html,这篇博客对KMP算法的解释很清晰,但缺点是没有代码的实现.所以本人根据这位大神的思路写了一下算法的C++实现. C++代码如下: #include <iostream> #include<string.h> using namesp

字符串匹配 - KMP算法

首先大致的学习一下有限自动机字符匹配算法,然后在讨论KMP算法. 有限自动机 一个有限自动机M是一个五元组(Q,q0,A,Σ,δ),其中: Q是状态的集合, q0∈Q是初始状态, A是Q的字集,是一个接受状态集合, Σ是一个有限的输入字母表, δ是一个从Q×Σ到Q的函数,叫做转移函数. 下面定义几个相关函数: φ(w)是M在扫描字符串w后终止时的状态.函数φ有下列递归关系定义:φ(ε) = q0,φ(wa) = δ(φ(w),a), σ(x)是x的后缀中,关于P的最长前缀的长度. 字符串匹配自动

字符串匹配KMP算法

1. 字符串匹配的KMP算法 2. KMP算法详解 3. 从头到尾彻底理解KMP

字符串匹配-KMP算法学习笔记

参考文章: 1.字符串匹配的KMP算法 2.KMP算法详解 3.从头到尾彻底理解KMP 版权声明:本文为博主原创文章,未经博主允许不得转载.

数据结构与算法简记--字符串匹配KMP算法

KMP算法 比较难理解,准备有时间专门啃一下. 核心思想与BM算法一样:假设主串是 a,模式串是 b.在模式串与主串匹配的过程中,当遇到不可匹配的字符的时候,我们希望找到一些规律,可以将模式串往后多滑动几位,跳过那些肯定不会匹配的情况. 不同的是:在模式串和主串匹配的过程中,把不能匹配的那个字符仍然叫作坏字符,把已经匹配的那段字符串叫作好前缀. 关键找相等的最长匹配前缀和最长匹配后缀.有两种情况,(1)如果b[i-1]的最长前缀下一个字符与b[i]相等,则next[i]=next[i-1]+1.

字符串匹配KMP算法实现

由于KMP算法比较难,所以建议初学者分两个阶段学习. 第一个阶段先理解算法思想,可以参考这篇文章:点击打开链接 第二个阶段,理解算法的具体实现,本文主要讲解这部分,需要注意的地方都在程序里了,自己看吧 程序(调试通过): #include <stdio.h> #include <string.h> int KMP(char* s, char* pattern, int start, int next[]); void get_new_next(char* pattern, int

【数据结构与算法】字符串匹配KMP算法

首先需要了解一下BF暴力匹配算法,这个算法为每一个串设置一个指针,然后两个指针同时后移,出现不匹配的情况后,主串指针回到开始后移之前的位置的下一位,模式串指针回到最开始. 对比一下KMP算法,同样是设置两个指针,然后两个指针同时后移,出现不匹配的情况后,主串指针不变,模式串指针回溯一定的距离.具体模式串指针回溯多少,是第一次看KMP算法的人比较难以理解的,其实仔细想想,模式串的前缀和后缀其实也是在做匹配,当P[K]!=P[J]时就是失配,那么前缀的指针就需要回溯,所以后k=next[k]. 代码

字符串匹配——KMP算法(C++)

源代码: #include<cstdio> #include<cstring> #include<iostream> using namespace std; string s1,s2; int m,n,k(0),next[1001]; //在Next数组中,存储的是匹配失败后,上一位应该跳跃到的节点编号. int main() { getline(cin,s1); getline(cin,s2); m=s1.size(); n=s2.size(); next[0]=0