直接插入排序(插入排序)-八大排序三大查找汇总(4)

基本思想

  直接插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止。

  直接插入排序是由两层嵌套循环组成的。外层循环标识并决定待比较的数值。内层循环为待比较数值确定其最终位置。直接插入排序是将待比较的数值与它的前一个数值进行比较,所以外层循环是从第二个数值开始的。当前一数值比待比较数值大的情况下继续循环比较,直到找到比待比较数值小的并将待比较数值置入其后一位置,结束该次循环。

时间复杂度

  O(n^2)

空间复杂度

  O(1)

稳定性

  如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

代码

严格按定义书写的代码

 1 void Insertsort1(int a[], int n)
 2 {
 3     int i, j, k;
 4     for (i = 1; i < n; i++)
 5     {
 6         //为a[i]在前面的a[0...i-1]有序区间中找一个合适的位置
 7         for (j = i - 1; j >= 0; j--)
 8             if (a[j] <= a[i]) //注意插入排序是稳定的,所以a[j]=a[i]时也不处理
 9                 break;
10
11         //如找到了一个合适的位置
12         if (j != i - 1)
13         {
14             //将比a[i]大的数据向后移
15             int temp = a[i];
16             for (k = i - 1; k > j; k--)
17                 a[k + 1] = a[k];
18             //将a[i]放到正确位置上
19             a[k + 1] = temp;
20         }
21     }
22 }

  将上面代码进行简化,将搜索和数据后移这二个步骤合并。

 1 void Insertsort2(int a[], int n)
 2 {
 3     int i, j;
 4     for (i = 1; i < n; i++)
 5     {
 6         int temp = a[i];
 7         for (j = i - 1; j >= 0 && a[j] > temp; j--)
 8             a[j + 1] = a[j];
 9         a[j + 1] = temp;
10     }
11     print(a, 10);
12 }

  在某些极端的情况下,对内存需要特别严格时,比如不用temp变量(去掉哨兵)完成直接插入排序,又该如何实现呢。

 1 inline void Swap(int &a, int &b)
 2 {
 3     if (a != b)
 4     {
 5         a ^= b;
 6         b ^= a;
 7         a ^= b;
 8     }
 9 }
10 void Insertsort3(int a[], int n)
11 {
12     int i, j;
13     for (i = 1; i < n; i++)
14         for (j = i - 1; j >= 0 && a[j] > a[j + 1]; j--)
15             Swap(a[j], a[j + 1]);
16 }
时间: 2024-10-11 05:18:28

直接插入排序(插入排序)-八大排序三大查找汇总(4)的相关文章

希尔排序(插入排序)-八大排序三大查找汇总(5)

基本思想 该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序. 稳定性 由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的. 时间复杂度 希尔排序的时间复杂度取决于步长的选择. 平均情况下,

堆排序(选择排序)-八大排序三大查找汇总(2)

二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满足二个特性: 1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值. 2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆). 当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆.当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆.下图展示一个最小堆: 堆的存储 一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2.它的左右子结点下标分别为2 * i + 1和2 * i + 2.如

简单选择排序(选择排序)-八大排序三大查找汇总(1)

工作原理: 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完. 稳定性: 选择排序是不稳定的排序方法(比如序列[5, 5, 3]第一次就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面). 时间复杂度: 比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N=(n-1)+(n-2)+...+1=n*(n-1)/2. 交换次数O(n),最好情况是,已经有序,交换0次:最坏情况下,即待排序记录初始状态是按第一条记录最大

归并排序-八大排序三大查找汇总(7)

基本思想 归并排序简单的说就是递归后合并,该算法是分治法(Divide and Conquer)的一个典型应用. 基本思想为:将待排序序列R[0...n-1]看成是n个长度为1的有序序列,两两有序表成对归并,得到n/2个长度为2的有序表:将这些有序序列再次归并,如此反复进行下去,最后得到一个长度为n的有序序列. 综上可知: 归并排序其实要做两件事: (1)“分解”——将序列每次折半划分. (2)“合并”——将划分后的序列段两两合并后排序. 性能 排序类别 排序方法 时间复杂度 空间复杂度 稳定性

快速排序(交换排序)-八大排序三大查找汇总(6)

基本思想 1.先从数列中取出一个数作为基准数. 2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边. 3.再对左右区间重复第二步,直到各区间只有一个数. 性能 时间复杂度:平均情况下的时间复杂度为O(nlogn).最坏情况下时间复杂度为O(n2). 空间复杂度:除去程序运行实现的空间消费(例如递归栈),快速排序算法只需消耗确定数量的空间(即O(1),常数级空间). 稳定性:不稳定的算法 注意 编译器函数库自带的快速排序函数:qsort() 用 法: void qsort

冒泡排序-八大排序三大查找汇总(3)

基本思想 两两相邻元素之间的比较,如果前者大于后者,则交换: 设数组长度为N. 1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换. 2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置. 3.N=N-1,如果N不为0就重复前面二步,否则排序完成. 稳定性 冒泡排序是一种稳定的排序算法 时间复杂度 若文件的初始状态是正序的,一趟扫描即可完成排序.所需的关键字比较次数 和记录移动次数  均达到最小值:  ,  .所以,冒泡排序最好

优化的直接插入排序(二分查找插入排序,希尔排序)

直接插入排序 (一)概念及实现 直接插入排序的原理:先将原序列分为有序区和无序区,然后再经过比较和后移操作将无序区元素插入到有序区中. 具体如下(实现为升序): 设数组为a[0…n]. 1.        将原序列分成有序区和无序区.a[0…i-1]为有序区,a[i…n] 为无序区.(i从1开始) 2.        从无序区中取出第一个元素,即a[i],在有序区序列中从后向前扫描. 3.        如果有序元素大于a[i],将有序元素后移到下一位置. 4.        重复步骤3,直到找

八大排序算法原理以及Java实现(直接插入排序)

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 1.插入排序-直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到

八大排序算法学习笔记:插入排序(二分插入排序)

二分插入排序   也称折半插入排序, 1.基本思想:设数列[0....n]分为两部分一部分是[0...i]为有序序列,另一部分是[i+1.....n]为无序序列,从无序序列中取一个数 x ,利用二分查找算法找到 x 在有序序列中的插入位置并插入,有序序列还是有序的,接下来重复上述步骤,直到无序序列全部插入有序序列 ,这是整个序列只剩下有序序列即有序了. 2.代码:    3.复杂度: 用二分插入排序所要进行的总比较次数为O(lgn),当n较大时,比直接插入排序的最大比较次数小得多,但大于最小比较