About Data Analysis

About Data Analysis

工具不能解决代码中的问题。它可以帮助你更好地了解你的代码正在做什么,通过捕捉应用程序运行时的详细统计信息,并将它们呈现给你进行分析。由于每个应用程序都不同,查找和解决问题的实际步骤各不相同。因此,您必须学习如何通过过滤不需要的数据来解释信息工具,并钻入与应用程序相关的数据。然后,您必须执行一些检查工作,将您识别的任何数据与应用程序中的代码关联起来,这样您就可以进行改进。Instruments doesn’t fix problems with your code. It helps you better understand what your code is doing by capturing detailed statistics as your app runs and presenting them to you for analysis. Since every app is different, the actual steps for finding and resolving problems vary. Therefore, you must learn how to interpret the information Instruments collects by filtering out data you don’t need, and drilling down into data that’s relevant to your app. You must then perform some detective work to correlate any data you identify to the code in your app so you can make improvements.

执行跟踪后,您可以检查在时间线面板所收集的数据的详细信息窗格中,和扩展的详细地区检查员的窗格中,如图10-1所示。After performing a trace, you can examine the collected data in the timeline pane, the detail pane, and the extended detail area () of the inspector pane, as shown in Figure 10-1.

Figure 10-1A trace document containing collected data

TIP

许多工具在监视应用程序时捕获定期堆栈跟踪。当您确定要进一步调查的特定数据点时,您可以通过堆栈跟踪来识别相应的代码。如果你描述一个程序你开在Xcode,你可以经常查看工具的源代码的权利或跳到Xcode的进一步研究。Many instruments capture periodic stack traces as they monitor your app. When you identify a specific data point you want to investigate further, you can go through the stack trace to identify the corresponding code. If you’re profiling an app you have opened in Xcode, you can often view the source code right in Instruments or jump over to Xcode to examine it further.

时间: 2024-10-20 05:00:22

About Data Analysis的相关文章

Data analysis system

A data analysis system, particularly, a system capable of efficiently analyzing big data is provided. The data analysis system includes an analyst server, at least one data storage unit, a client terminal independent of the analyst server, and a cach

Spark的Python和Scala shell介绍(翻译自Learning.Spark.Lightning-Fast.Big.Data.Analysis)

Spark提供了交互式shell,交互式shell让我们能够点对点(原文:ad hoc)数据分析.如果你已经使用过R,Python,或者Scala中的shell,或者操作系统shell(例如bash),又或者Windows的命令提示符界面,你将会对Spark的shell感到熟悉. 但实际上Spark shell与其它大部分shell都不一样,其它大部分shell让你通过单个机器上的磁盘或者内存操作数据,Spark shell让你可以操作分布在很多机器上的磁盘或者内存里的数据,而Spark负责在集

Python For Data Analysis -- NumPy

NumPy作为python科学计算的基础,为何python适合进行数学计算,除了简单易懂,容易学习 Python可以简单的调用大量的用c和fortran编写的legacy的库   The NumPy ndarray: A Multidimensional Array Object ndarray,可以理解为n维数组,用于抽象矩阵和向量 Creating ndarrays 最简单的就是,从list初始化, 当然还有其他的方式,比如, 汇总,     Data Types for ndarrays

Python For Data Analysis -- Pandas

首先pandas的作者就是这本书的作者 对于Numpy,我们处理的对象是矩阵 pandas是基于numpy进行封装的,pandas的处理对象是二维表(tabular, spreadsheet-like),和矩阵的区别就是,二维表是有元数据的 用这些元数据作为index更方便,而Numpy只有整形的index,但本质是一样的,所以大部分操作是共通的 大家碰到最多的二维表应用,关系型数据库中的表,有列名和行号,这些就是元数据 当然你可以用抽象的矩阵来对这些二维表做统计,但使用pandas会更方便  

《Python For Data Analysis》学习笔记-1

在引言章节里,介绍了MovieLens 1M数据集的处理示例.书中介绍该数据集来自GroupLens Research(http://www.groupLens.org/node/73),该地址会直接跳转到https://grouplens.org/datasets/movielens/,这里面提供了来自MovieLens网站的各种评估数据集,可以下载相应的压缩包,我们需要的MovieLens 1M数据集也在里面. 下载解压后的文件夹如下: 这三个dat表都会在示例中用到,但是我所阅读的<Pyt

Python For Data Analysis -- IPython

IPython Basics 首先比一般的python shell更方便一些 比如某些数据结构的pretty-printed,比如字典 更方便的,整段代码的copy,执行 并且可以兼容部分system shell , 比如目录浏览,文件操作等   Tab Completion 这个比较方便,可以在下面的case下,提示和补全未输入部分 a. 当前命名空间中的名字 b.对象或模块的属性和函数 c. 文件路径   Introspection, 内省 ?,在标识符前或后加上,显示出对象状况和docst

Learning Spark: Lightning-Fast Big Data Analysis 中文翻译

Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止对此书的开源翻译. Translation the book of Learning Spark: Lightning-Fast Big Data Analysis is only for spark developer educational purposes. If I violated you

Python 探索性数据分析(Exploratory Data Analysis,EDA)

此脚本读取的是 SQL Server ,只需给定表名或视图名称,如果有数据,将输出每个字段符合要求的每张数据分布图. # -*- coding: UTF-8 -*- # python 3.5.0 # 探索性数据分析(Exploratory Data Analysis,EDA) __author__ = 'HZC' import math import sqlalchemy import numpy as np import pandas as pd import matplotlib.pyplo

《python for data analysis》第四章,numpy的基本使用

<利用python进行数据分析>第四章的程序,介绍了numpy的基本使用方法.(第三章为Ipython的基本使用) 科学计算.常用函数.数组处理.线性代数运算.随机模块-- # -*- coding:utf-8 -*-# <python for data analysis>第四章, numpy基础# 数组与矢量计算import numpy as npimport time # 开始计时start = time.time() # 创建一个arraydata = np.array([[