一、原理
双边滤波(Bilateral filter)是一种可以去噪保边的滤波器。之所以可以达到此效果,是因为滤波器是由两个函数构成:一个函数是由几何空间距离决定滤波器系数,另一个由像素差值决定滤波器系数。
原理示意图如下:
双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,
权重系数w(i,j,k,l)取决于定义域核
和值域核
的乘积
二、C++实现
2.1 OpenCV调用方法:
cvSmooth(m_iplImg, dstImg, CV_BILATERAL, 2 * r + 1, 0, sigma_r, sigma_d);
2.2 MATLAB版代码:
调用方法参见资料[1]
2.3 C++代码
void CImageObj::Bilateral_Filter(int r, double sigma_d, double sigma_r) { int i, j, m, n, k; int nx = m_width, ny = m_height; int w_filter = 2 * r + 1; // 滤波器边长 double gaussian_d_coeff = -0.5 / (sigma_d * sigma_d); double gaussian_r_coeff = -0.5 / (sigma_r * sigma_r); double** d_metrix = NewDoubleMatrix(w_filter, w_filter); // spatial weight double r_metrix[256]; // similarity weight // copy the original image double* img_tmp = new double[m_nChannels * nx * ny]; for (i = 0; i < ny; i++) for (j = 0; j < nx; j++) for (k = 0; k < m_nChannels; k++) { img_tmp[i * m_nChannels * nx + m_nChannels * j + k] = m_imgData[i * m_nChannels * nx + m_nChannels * j + k]; } // compute spatial weight for (i = -r; i <= r; i++) for (j = -r; j <= r; j++) { int x = j + r; int y = i + r; d_metrix[y][x] = exp((i * i + j * j) * gaussian_d_coeff); } // compute similarity weight for (i = 0; i < 256; i++) { r_metrix[i] = exp(i * i * gaussian_r_coeff); } // bilateral filter for (i = 0; i < ny; i++) for (j = 0; j < nx; j++) { for (k = 0; k < m_nChannels; k++) { double weight_sum, pixcel_sum; weight_sum = pixcel_sum = 0.0; for (m = -r; m <= r; m++) for (n = -r; n <= r; n++) { if (m*m + n*n > r*r) continue; int x_tmp = j + n; int y_tmp = i + m; x_tmp = x_tmp < 0 ? 0 : x_tmp; x_tmp = x_tmp > nx - 1 ? nx - 1 : x_tmp; // 边界处理,replicate y_tmp = y_tmp < 0 ? 0 : y_tmp; y_tmp = y_tmp > ny - 1 ? ny - 1 : y_tmp; int pixcel_dif = (int)abs(img_tmp[y_tmp * m_nChannels * nx + m_nChannels * x_tmp + k] - img_tmp[i * m_nChannels * nx + m_nChannels * j + k]); double weight_tmp = d_metrix[m + r][n + r] * r_metrix[pixcel_dif]; // 复合权重 pixcel_sum += img_tmp[y_tmp * m_nChannels * nx + m_nChannels * x_tmp + k] * weight_tmp; weight_sum += weight_tmp; } pixcel_sum = pixcel_sum / weight_sum; m_imgData[i * m_nChannels * nx + m_nChannels * j + k] = (uchar)pixcel_sum; } // 一个通道 } // END ALL LOOP UpdateImage(); DeleteDoubleMatrix(d_metrix, w_filter, w_filter); delete[] img_tmp; }
性能方面,跟OpenCV处理速度有差距,有兴趣的,可以自己研究OpenCV版本的源代码
三、效果图
四、参考资料
资料[4]是MIT的学习资料,最全面,包括课件、论文、代码等,涵盖原理、改进、应用、与PDE的联系等等,最值得一看。
[1] 双边滤波器的原理及实现[Rachel-Zhang]
[3] Bilateral Filtering(双边滤波) for SSAO
[4] MIT学习资料
时间: 2024-10-05 04:13:12