CodeForces 1118F2. Tree Cutting (Hard Version)

题目简述:给定$n \leq 3 \times 10^5$个节点的树,其中一部分节点被染色,一共有$k$种不同的颜色。求将树划分成 $k$ 个不相交的部分的方案数,使得每个部分中除了未染色的节点以外的所有节点颜色相同,答案模$998244353$(质数)。

解:code

Step 1. 缩点

相关题目:CodeForces 76F. Tourist

观察:为使相同颜色的节点处在同一个子树中,则包含这些节点的最小子树的所有节点必然会被划分在同一部分。

因此,在随意选择一个节点作为树的根节点后,每种颜色的所有节点的LCA(最近公共祖先)必然也与这些节点在同一部分。

同时,我们也得到了无解判定:如果某两种颜色的节点的最小子树具有相同部分,则必定无解。

在判断有解之后,我们可以把每种颜色对应的最小子树缩成一个节点,则问题就转化为:

【一个$n \leq 3\times 10^5$个节点的树,其中有$k$个节点是被标记的,问有多少种方法把树分成$k$部分,每部分包含恰好一个被标记的节点。】

Step 2. 动态规划

我们在缩点之后,只需要解决转化后的问题。

设$f[x][s]$表示以$x$为根的子树有多少种划分方式,使得$x$所在的部分 【未包含$s=0$ / 包含$s=1$】 一个被标记的节点。

1. 若$x$未被标记,则

1.1. 若$x$所在部分未包含被标记的节点,则对每个$x$的儿子节点$y$,若$y$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$y$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[y][0]+f[y][1]$种可能。由乘法原理,有

$$ f[x][0] = \prod_{y \in \text{son}(x)} (f[y][0]+f[y][1]). $$

1.2. 若$x$所在部分包含被标记的节点,则枚举$x$的儿子节点$y$,其所在部分包含被标记节点,有$f[y][1]$种可能;对其他儿子节点$z \neq y$,若$z$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$z$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[z][0]+f[z][1]$种可能。由乘法原理和加法原理,有

$$ f[x][1] = \sum_{y \in \text{son}(x)} f[y][1] \sum_{y \neq z \in \text{son}(x)} (f[z][0]+f[z][1]). $$

2. 若$x$被标记,则

2.1. $x$所在部分不可能未包含被标记节点,即

$$ f[x][0] = 0, $$

2.2. 若$x$所在部分包含被标记的节点,则对每个$x$的儿子节点$y$,若$y$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$y$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[y][0]+f[y][1]$种可能。(这与1.1.的讨论相同)由乘法原理,有

$$ f[x][1] = \prod_{y \in \text{son}(x)} (f[y][0]+f[y][1]). $$

总时间复杂度为$O(n)$。

原文地址:https://www.cnblogs.com/TinyWong/p/10422194.html

时间: 2024-10-09 01:28:29

CodeForces 1118F2. Tree Cutting (Hard Version)的相关文章

Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】

任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output You are given an undirected tree of nn vertices. Some vert

3391: [Usaco2004 Dec]Tree Cutting网络破坏

3391: [Usaco2004 Dec]Tree Cutting网络破坏 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 76  Solved: 59[Submit][Status][Discuss] Description 约翰意识到贝茜建设网络花费了他巨额的经费,就把她解雇了.贝茜很愤怒,打算狠狠报 复.她打算破坏刚建成的约翰的网络.    约翰的网络是树形的,连接着N(1≤N≤10000)个牛棚.她打算切断某一个牛棚的电源,使和这个牛棚相连的

BZOJ 3391: [Usaco2004 Dec]Tree Cutting网络破坏( dfs )

因为是棵树 , 所以直接 dfs 就好了... ------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #define rep( i , n ) for( int i = 0 ; i < n

【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)

Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2,...,n. Each vertex of the tree has an integer value vi. The value of a non-empty tree T is equal to v1⊕v2⊕...⊕vn, where ⊕ denotes bitwise-xor. Now fo

poj 2378 Tree Cutting (树形dp)

Tree Cutting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3910   Accepted: 2347 Description After Farmer John realized that Bessie had installed a "tree-shaped" network among his N (1 <= N <= 10,000) barns at an incredible

【HDU5909】Tree Cutting(FWT)

[HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为\(0..m-1\)的所有子树的个数 题解 考虑\(dp\) 设\(f[i][j]\)表示以\(i\)为根节点的子树中,异或和为\(j\)的子树的个数 很显然,每次合并就是两个\(dp\)值做\(xor\)卷积 那么直接用\(FWT\)优化就行了 #include<iostream> #inclu

CodeForces - 1118 F2 Tree Cutting

题目传送门 题解: 先注意到一定存在k种颜色,切成k个块, 然后要求每个块内的颜色都一样,所以可以发现同一种颜色一定在同一个块内,故任意2个相同颜色的最短路劲上的点的颜色都是该颜色. 我们可以先把任意相同颜色点对的路径上的点的颜色都染成这个颜色. 如果发现存在一个点是已经有颜色的话,那么答案一定为0. 至于怎么颜色, 我们可以暴力往上跑,然后压缩路径,和并查集一样的道理,路过的点都染色且压缩. 这样就完成了第一部分的处理,接下来就是树DP了. 定义dp[ u ][ 0 ] 的含义是 以u为根的子

Codeforces 570D TREE REQUESTS dfs序+树状数组 异或

http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Roman planted a tree consisting of?n?vertices. Each vertex contains a lowercase

POJ 2378 Tree Cutting(树的重心)

题目链接:http://poj.org/problem?id=2378 题目: Description After Farmer John realized that Bessie had installed a "tree-shaped" network among his N (1 <= N <= 10,000) barns at an incredible cost, he sued Bessie to mitigate his losses. Bessie, fee