二叉树、前序遍历、中序遍历、后序遍历

一、树

在谈二叉树前先谈下树和图的概念

树:不包含回路的连通无向图(树是一种简单的非线性结构)

树有着不包含回路这个特点,所以树就被赋予了很多特性

1、一棵树中任意两个结点有且仅有唯一的一条路径连通

2、一棵树如果有n个结点,那它一定恰好有n-1条边

3、在一棵树中加一条边将会构成一个回路

4、树中有且仅有一个没有前驱的结点称为根结点

在对树进行讨论的时候将树中的每个点称为结点,

根结点:没有父结点的结点

叶结点:没有子结点的结点

内部结点:一个结点既不是根结点也不是叶结点

每个结点还有深度,比如上图左边的树的4号结点深度是3(深度是指从根结点到这个结点的层数,根结点为第一层)

二、二叉树

基本概念:

二叉树是一种非线性结构,二叉树是递归定义的,其结点有左右子树之分

二叉树的存储结构:

二叉树通常采用链式存储结构,存储结点由数据域和指针域(指针域:左指针域和右指针域)组成,二叉树的链式存储结构也称为二叉链表,对满二叉树和完全二叉树可按层次进行顺序存储

特点:

1、每个结点最多有两颗子树

2、左子树和右子树是有顺序的,次序不能颠倒

3、即使某结点只有一个子树,也要区分左右子树

4、二叉树可为空,空的二叉树没有结点,非空二叉树有且仅有一个根节点

二叉树中有两种特殊的二叉树:满二叉树、完全二叉树

满二叉树:二叉树中每个内部结点都有存在左子树和右子树(或者说满二叉树所有的叶结点都有同样的深度)

满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树

(满二叉树的严格的定义是:一颗深度为h且有2h-1个结点的二叉树)

(图片来源:https://www.cnblogs.com/polly333/p/4740355.html)

完全二叉树:

第一种解释:如果一颗二叉树除最右边位置上有一个或几个叶结点缺少外,其他是丰满的那么这样的二叉树就是完全二叉树(这句话不太好理解),看下面第二种解释

第二种解释:除第h层外,其他各层(1到h-1)的结点数都达到最大个数,第h层从右向左连续缺若干结点,则这个二叉树就是完全二叉树

也就是说如果一个结点有右子结点,那么它一定也有左子结点

第三种解释:除最后一层外,每一层上的节点数均达到最大值,在最后一层上只缺少右边的若干结点

完全二叉树的形状类似于下图

为了方便理解请看下图(个人理解:完全二叉树就是从上往下填结点,从左往右填,填满了一层再填下一层)

(图片来源:https://www.cnblogs.com/polly333/p/4740355.html#3

二叉树相关词语解释:

结点的度:结点拥有的子树的数目

叶子结点:度为0的结点(tips:在任意一个二叉树中,度为0的叶子结点总是比度为2的结点多一个)

分支结点:度不为0的结点

树的度:树中结点的最大的度

层次:根结点的层次为1,其余结点的层次等于该结点的双亲结点的层次加1

树的高度:树中结点的最大层次

二叉树基本性质:

性质1:在二叉树的第k层上至多有2k-1个结点(k>=1)

性质2:在深度为m的二叉树至多有2m-1个结点

性质3:对任意一颗二叉树,度为0的结点(即叶子结点)总是比度为2的结点多一个

性质4:具有n个结点的完全二叉树的深度至少为[log2n]+1,其中[log2n]表示log2n的整数部分

实现代码:

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #define N 10
 4
 5 typedef struct node
 6 {
 7     char data;
 8     struct node *lchild;    /* 左子树 */
 9     struct node *rchild;    /* 右子树 */
10
11 }BiTNode, *BiTree;
12
13 void CreatBiTree (BiTree *T) /* BiTree *T等价于 struct node **T    */
14 {
15     char ch;
16
17     scanf("%c", &ch);
18     if (ch == ‘#‘)    /* 当遇到#时,令树的结点为NULL,从而结束该分支的递归 */
19     {
20         *T = NULL;
21     }
22     else
23     {
24         *T = (BiTree)malloc(sizeof(BiTNode));
25         if (*T == NULL)
26         {
27             printf("内存分配失败");
28             exit(0);
29         }
30         (*T)->data = ch;        /* 生成结点 */
31         CreatBiTree(&(*T)->lchild);    /* 构造左子树 */
32         CreatBiTree(&(*T)->rchild);    /* 构造右子树 */
33         /* 这里需要注意的是->的优先级比&高,所以&(*T)->lchild得到的是lchild的地址 */
34     }
35
36 }
37 int main()
38 {
39     int level  = 1;
40
41     BiTree t = NULL;
42     printf("以前序遍历方式输入二叉树\n");
43     CreatBiTree(&t);    /* 传入指针的地址 */
44 }

上面的代码采用的是以前序遍历方式输入二叉树,当输入“#”时,指针指向NULL,说明是改结点是叶结点

三、二叉树的遍历(前序\中序\后序遍历)

二叉树的遍历是指不重复地访问二叉树中所有结点,主要指非空二叉树,对于空二叉树则结束返回,二叉树的遍历主要包括前序遍历、中序遍历、后序遍历

前序遍历:首先访问根结点,然后遍历左子树,最后遍历右子树(根->左->右)

顺序:访问根节点->前序遍历左子树->前序遍历右子树

 1 /* 以递归方式 前序遍历二叉树 */
 2 void PreOrderTraverse(BiTree t, int level)
 3 {
 4     if (t == NULL)
 5     {
 6         return ;
 7     }
 8     printf("data = %c level = %d\n ", t->data, level);
 9     PreOrderTraverse(t->lchild, level + 1);
10     PreOrderTraverse(t->rchild, level + 1);
11 }

中序遍历:首先遍历左子树,然后访问根节点,最后遍历右子树(左->根->右)

顺序:中序遍历左子树->访问根节点->中序遍历右子树

 1 /* 以递归方式 中序遍历二叉树 */
 2 void PreOrderTraverse(BiTree t, int level)
 3 {
 4     if (t == NULL)
 5     {
 6         return ;
 7     }
 8     PreOrderTraverse(t->lchild, level + 1);
 9     printf("data = %c level = %d\n ", t->data, level);
10     PreOrderTraverse(t->rchild, level + 1);
11 }

后序遍历:首先遍历左子树,然后遍历右子树,最后访问根节点(左->右->根)

顺序:后序遍历左子树->后序遍历右子树->访问根节点

 1 /* 以递归方式 后序遍历二叉树 */
 2 void PreOrderTraverse(BiTree t, int level)
 3 {
 4     if (t == NULL)
 5     {
 6         return ;
 7     }
 8     PreOrderTraverse(t->lchild, level + 1);
 9     PreOrderTraverse(t->rchild, level + 1);
10     printf("data = %c level = %d\n ", t->data, level);
11 }

从上面可以看出,三种遍历方式极其相似,只是语句 printf("data = %c level = %d\n ", t->data, level);的位置发生了变化

原文地址:https://www.cnblogs.com/lanhaicode/p/10358736.html

时间: 2024-10-25 00:49:04

二叉树、前序遍历、中序遍历、后序遍历的相关文章

【基础备忘】 二叉树前序、中序、后序遍历相互求法

转自:http://www.cnblogs.com/fzhe/archive/2013/01/07/2849040.html 今天来总结下二叉树前序.中序.后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明. 首先,我们看看前序.中序.后序遍历的特性: 前序遍历:     1.访问根节点     2.前序遍历左子树     3.前序遍历右子树 中序遍历:     1.中序遍历左子树     2

树(二叉树)的建立和遍历算法(一)(前序,中序,后序)

最近学习树的概念,有关二叉树的实现算法记录下来... 不过学习之前要了解的预备知识:树的概念:二叉树的存储结构:二叉树的遍历方法.. 二叉树的存储结构主要了解二叉链表结构,也就是一个数据域,两个指针域,(分别为指向左右孩子的指针),从下面程序1,二叉树的存储结构可以看出. 二叉树的遍历方法:主要有前序遍历,中序遍历,后序遍历,层序遍历.(层序遍历下一篇再讲,本篇主要讲的递归法) 如这样一个二叉树: 它的前序遍历顺序为:ABDGHCEIF(规则是先是根结点,再前序遍历左子树,再前序遍历右子树) 它

二叉树各种相关操作(建立二叉树、前序、中序、后序、求二叉树的深度、查找二叉树节点,层次遍历二叉树等)(C语言版)

将二叉树相关的操作集中在一个实例里,有助于理解有关二叉树的相关操作: 1.定义树的结构体: 1 typedef struct TreeNode{ 2 int data; 3 struct TreeNode *left; 4 struct TreeNode *right; 5 }TreeNode; 2.创建根节点: 1 TreeNode *creatRoot(){ 2 TreeNode * root =(TreeNode *)malloc(sizeof(TreeNode)); 3 if(NULL=

二叉树的前序、中序、后序遍历的递归和非递归算法实现

1 /** 2 * 二叉树的前序.中序.后序遍历的递归和非递归算法实现 3 **/ 4 5 //二叉链表存储 6 struct BTNode 7 { 8 struct BTNode *LChild; // 指向左孩子指针 9 ELEMENTTYPE data; // 结点数据 10 struct BTNode *RChild; // 指向右孩子指针 11 }; 12 13 /** 14 * 前序遍历 15 **/ 16 // 递归实现 17 void PreorderTraversal(BTNo

二叉树前序、中序、后序遍历相互求法

今天来总结下二叉树前序.中序.后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明. 首先,我们看看前序.中序.后序遍历的特性: 前序遍历:     1.访问根节点     2.前序遍历左子树     3.前序遍历右子树 中序遍历:     1.中序遍历左子树     2.访问根节点     3.中序遍历右子树 后序遍历:     1.后序遍历左子树     2.后序遍历右子树     3.访问

二叉树遍历(前序、中序、后序、层次、深度优先、广度优先遍历)

二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有深度遍历和广度遍历,深度遍历有前序.中序以及后序三种遍历方法,广度遍历即我们平常所说的层次遍历.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁,而对于广度遍历来说,需要其他数据结构的支撑,比如堆了.所以,对于一段代码来说,可读性有时候要比代码本身的效率要重要的多. 四种主要的遍历思想为: 前序遍历:根结点 ---> 左子树 ---> 右子树 中序遍历:左子

关于二叉树的问题1-已知前序,中序求后序遍历

对于一棵二叉树而言,可以由其前序和中序或者中序和后序的遍历序列,确定一棵二叉树. 那么对于已知前序和中序序列,求后序序列也就是先还原二叉树,然后对其进行后序遍历即可. 二叉树结点的结构定义如下: struct TreeNode { char value; TreeNode *leftChild; TreeNode *rightChild; }; 实现代码如下: #include <stdio.h> #include <string.h> #include <stdlib.h&

二叉树基本操作:前序、中序、后序遍历(递归方式)

二叉树是最常见最重要的数据结构之一,它的定义如下: 二叉树(binary tree)是有限多个节点的集合,这个结合或者是空集,或者由一个根节点和两颗互不相交的.分别称为左子树和右子树的二叉树组成. 二叉树最基本的操作是遍历:一般约定遍历时左节点优先于右节点,这样根据根节点的遍历顺序可分为三种遍历操作:前序-先遍历根节点,再处理左右节点:中序-先遍历左节点,然后处理根节点,最后处理右节点:后序-先遍历左右节点,然后处理根节点. 从上边二叉树定义可以看出:二叉树使用了递归的概念描述.所以,二叉树的很

二叉树 层序、前序、中序、后序遍历。

简单二叉树     public  class Node<T>     {         private T _data;         private Node<T> _leftChild;         private Node<T> _rightChild;         private Node<T> _Parent;         private int flag;         public  Node(){}         pub

【转】二叉树前序、中序、后序遍历相互求法

今天来总结下二叉树前序.中序.后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明. 首先,我们看看前序.中序.后序遍历的特性: 前序遍历:     1.访问根节点     2.前序遍历左子树     3.前序遍历右子树 中序遍历:     1.中序遍历左子树     2.访问根节点     3.中序遍历右子树 后序遍历:     1.后序遍历左子树     2.后序遍历右子树     3.访问