吴裕雄 python深度学习与实践(7)

import cv2
import numpy as np

img = np.mat(np.zeros((300,300)))
cv2.imshow("test",img)
cv2.waitKey(0)
import cv2
import numpy as np

img = np.mat(np.zeros((300,300),dtype=np.uint8))
cv2.imshow("test",img)
cv2.waitKey(0)
import cv2
import numpy as np

image = np.mat(np.zeros((300,300)))
imageByteArray = bytearray(image)
print(imageByteArray)
imageBGR = np.array(imageByteArray).reshape(800,900)
cv2.imshow("cool",imageBGR)
cv2.waitKey(0)
import os
import cv2
import numpy as np

randomByteArray = bytearray(os.urandom(120000))
flatNumpyArray = np.array(randomByteArray).reshape(300,400)
cv2.imshow("cool",flatNumpyArray)
cv2.waitKey(0)
import cv2
import numpy as np
img = np.zeros((300,300))
img[0,0] = 255
cv2.imshow("img",img)
cv2.waitKey(0)
import cv2
import numpy as np

img = np.zeros((300,300))
img[:,10] = 255
img[10,:] = 255
cv2.imshow("img",img)
cv2.waitKey(0)
import cv2
import numpy as np

from scipy import ndimage

kernel33 = np.array([[-1,-1,-1],
                     [-1,8,-1],
                     [-1,-1,-1]])

kernel33_D = np.array([[1,1,1],
                       [1,-8,1],
                       [1,1,1]])

img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg",0)
linghtImg = ndimage.convolve(img,kernel33_D)
cv2.imshow("img",linghtImg)
cv2.waitKey()

import numpy as np
import cv2
from scipy import ndimage

img = cv2.imread("lena.jpg",0)
blurred = cv2.GaussianBlur(img,(11,11),0)
gaussImg = img - blurred
cv2.imshow("img",gaussImg)
cv2.waitKey()

import numpy as np

def convolve(dateMat,kernel):
    m,n = dateMat.shape
    km,kn = kernel.shape
    newMat = np.ones(((m - km + 1),(n - kn + 1)))
    tempMat = np.ones(((km),(kn)))
    for row in range(m - km + 1):
        for col in range(n - kn + 1):
            for m_k in range(km):
                for n_k in range(kn):
                    tempMat[m_k,n_k] = dateMat[(row + m_k),(col + n_k)] * kernel[m_k,n_k]
            newMat[row,col] = np.sum(tempMat)
    return newMat

dateMat = np.mat([
    [1,2,1,2,0,1,0,1,1],
    [0,3,1,1,0,0,1,0,1],
    [1,2,1,0,2,1,1,0,0],
    [2,2,0,1,1,1,1,1,0],
    [3,1,1,0,1,1,0,0,1],
    [1,0,1,1,1,0,0,1,1],
    [1,1,1,1,0,1,1,1,1],
    [1,0,1,1,0,1,0,1,0],
    [0,1,1,1,1,2,0,1,0]
])

kernel = np.mat([
    [1,0,1],
    [0,-4,0],
    [1,0,1]
])

newMat = convolve(dateMat,kernel)
print(np.shape(newMat))
print(newMat)

原文地址:https://www.cnblogs.com/tszr/p/10355621.html

时间: 2024-11-06 09:51:30

吴裕雄 python深度学习与实践(7)的相关文章

吴裕雄 python深度学习与实践(1)

#coding = utf8 import threading,time count = 0 class MyThread(threading.Thread): def __init__(self,threadName): super(MyThread,self).__init__(name = threadName) def run(self): global count for i in range(100): count = count + 1 time.sleep(0.3) print(

吴裕雄 python深度学习与实践(2)

#coding = utf8 import threading,time,random count = 0 class MyThread (threading.Thread): def __init__(self,lock,threadName): super(MyThread,self).__init__(name = threadName) self.lock = lock def run(self): global count self.lock.acquire() for i in ra

吴裕雄 python深度学习与实践(3)

import threading, time def doWaiting(): print('start waiting:', time.strftime('%S')) time.sleep(3) print('stop waiting', time.strftime('%S')) thread1 = threading.Thread(target = doWaiting) thread1.start() time.sleep(1) #确保线程thread1已经启动 print('start j

吴裕雄 python深度学习与实践(4)

import numpy,math def softmax(inMatrix): m,n = numpy.shape(inMatrix) outMatrix = numpy.mat(numpy.zeros((m,n))) soft_sum = 0 for idx in range(0,n): outMatrix[0,idx] = math.exp(inMatrix[0,idx]) soft_sum += outMatrix[0,idx] for idx in range(0,n): outMat

吴裕雄 python深度学习与实践(5)

import numpy as np data = np.mat([[1,200,105,3,False], [2,165,80,2,False], [3,184.5,120,2,False], [4,116,70.8,1,False], [5,270,150,4,True]]) row = 0 for line in data: row += 1 print(row) print(data.size) import numpy as np data = np.mat([[1,200,105,3

吴裕雄 python深度学习与实践(6)

from pylab import * import pandas as pd import matplotlib.pyplot as plot import numpy as np filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv") dataFile = pd.read_csv(filePath,header=None, prefix="V") summary = dat

吴裕雄 python深度学习与实践(8)

import cv2 import numpy as np img = cv2.imread("G:\\MyLearning\\TensorFlow_deep_learn\\data\\lena.jpg") img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) turn_green_hsv = img_hsv.copy() turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] - 30 ) % 180 tur

吴裕雄 python深度学习与实践(10)

import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print(input2) input2 = input1 sess = tf.Session() print(sess.run(input2)) import tensorflow as tf input1 = tf.placeholder(tf.int32) input2 = tf.placeholder

吴裕雄 python深度学习与实践(11)

import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6]]) B = A.T.dot(C) AA = np.linalg.inv(A.T.dot(A)) l=AA.dot(B) P=A.dot(l) x=np.linspace(-2,2,10) x.shape=(1,10) xx=A.dot(x) fig = plt.figure() ax= fig.