红黑树的理解与Java实现

前言

前段时间在研究 JDK1.8 的 hashmap 源码,看到 put 方法的插入环节,遇到了红黑树,不得不停止阅读源码的过程,因为还没掌握红黑树是无法完全读透 hashmap 源码的。红黑树作为一种数据结构,它被应用得非常多,可能很多人不认识它,但其实它已经在默默为我们的代码在发光发热。例如,你只要在 Java 中用到 map,基本上就是在用红黑树(当元素个数到达八个时链表转红黑树)。

PS:在看这篇文章前,必须先了解普通的二叉查找树和平衡查找树(AVL)树、2-3-4树。不然看起来会非常吃力。

红黑树的性质

红黑树是一种自平衡树,它也是一颗二叉树。既然能保持平衡,说明它和 AVL 树类似,在插入或者删除时肯定有调整的过程,只不过这个调整过程并不像 AVL 树那样繁琐。为何红黑树使用得比 AVL 树更多,就是因为红黑树它的调整过程迅速且简介。红黑树有以下五个特性:

性质1:节点是红色或黑色
性质2:根是黑色
性质3:所有叶子都是黑色。叶子是 NIL 节点,也就是 Null 节点
性质4:如果一个节点是红的,则它的两个儿子都是黑的
性质5:从任一节点到其叶子的所有简单路径都包含相同数目的黑色节点。

下图展示了一棵红黑树。


分析:

注意理解上,叶子并不等价于黑色节点,但是他们的颜色都是黑色。

为何要给节点指定红或者黑的颜色?

作者这种设计,只是为了从编程上达到一种便利的效果。另外可以让它们在插入时达到近似的平衡,并不像 AVL 树那样绝对平衡。实际上,红黑树是2-3树的一种变体,某种情况下,它又相当于2-3-4树。因为2-3树在编程上需要比较多的代码量,所以诞生了红黑树这种巧妙的设计。通过加了颜色来区分结点,这样编程上就可以当成二叉树来写程序,不用分别用三个指针表示左、中、右孩子了。

看一下红黑树和2-3树的等价性联系

从上面可以看到,把红色节点放到与父亲齐平,就是2-3树中的一个2-3节点。

红黑树的操作

数据结构的性质看完之后,就要掌握它到底会存在哪种操作?例如 hashmap,它最常见的操作就是 get 和 put、扩容。同理,红黑树也有它的基本操作。因为它本身上也是一棵二叉查找树,所以重点关注的操作无非就是查找、插入、删除。

1. 查找操作

红黑树的查找方式很简单,只要是树,查找的过程无非就是一个递归过程。如果查找的元素小于当前节点,那么查找其左子树;如果查找的元素大于当前元素,则查找其右子树。

2. 插入操作

插入操作首先需要通过查找操作找到合适的插入点,然后插入新节点。如果在插入节点后,发生了违背红黑树特性的情况时,需要对红黑树进行旋转染色等操作,使其重新满足特性。

2.1 插入新节点

为了在插入新节点时尽可能少的违反红黑树特性且更容易调整红黑树,就先将新节点染成红色。这样就只可能会违反特性4。如果这里没有违反特性4,那么就不需要对红黑树进行调整,插入操作完成。

2.2 调整子树

那么,在违反了特性4的时候,新节点的父节点为红色节点。根据特性2可知,父节点不是根节点,则新节点必有祖父节点。又根据特性3可推论出红色节点必有两个黑色子节点(空节点为黑色)。此时会出现两种情况:叔节点为红色、叔节点为黑色。

图例:C 表示当前节点,P 表示父节点,U 表示叔节点,G 表示祖父节点

(1)父节点与叔节点都为红色的情况

在这种情况下,需要将父节点和叔节点变为黑色,再将祖父节点变为红色。这样,图上所展示的子树就满足了红黑树的特性。如下图所示。

但是这里又可能会产生新的违反特性情况,因为祖父节点变成了红色,那么它可能会造成违反特性4的情况。所以,这里就将祖父节点作为当前节点,进行新一轮的调整操作。

(2)父节点为红色,叔节点为黑色的情况

在这种情况下,对其调整的核心就是保持父节点分支符合特性4,而叔节点分支保持符合特性5。

第一步,旋转。对祖父节点进行左旋或者右旋。如果父节点是祖父节点的右子节点,那么对祖父节点进行左旋;否则,对祖父节点进行右旋。
第二步,染色。将祖父节点染为红色,而父节点染为黑色。

进过这两步,上图的情况会转换为下图所示。

可以看出,父节点这一分支进过调整后,当前节点与父节点的颜色不再是连续红色,满足特性4。而叔节点这一分支的黑色节点数目没有发生变化,满足特性5。对原祖父节点的父节点来说,该子树没有发生违反特性的变化。该子树调整完成。

2.3 检查根节点

当上述调整执行完后,还有最后一步,就是检查是否满足特性2。这一步只需要将根节点染成黑色就可以,无需再多加判断。

3. 删除操作

需要重点理解的就是删除操作,这个也是我觉得是红黑树中最难的部分。

删除操作要比插入操作略微复杂一些。因为删除的节点可能是出现在树的中间层的节点,此时删除该节点会遇到很复杂的情况。所以,在删除节点的时候,需要先对红黑树进行一些调整,使得删除节点对整个树的影响降到最低。

3.1 替换删除节点

首先根据 BST 删除节点的规则,使用当前节点左子树的最大值节点或者右子树的最小值节点代替其删除。这两个节点是其子树中数值上最贴近当前节点数值的节点)。 这一点,只要懂了二叉查找树的删除操作就明白了,在这里不多说了。如下图所示:

图例:D 表示当前节点,P 表示父节点,B 表示兄弟节点,BR 表示兄弟节点的右子节点,BL 表示兄弟节点的左子节点

既然待删除节点是要被移走的,那肯定有一个节点要替换到它的位置上去。如何找到这个替换节点,这个过程和二叉查找树一模一样,要么在它的左子树下一直往右找到最大节点,要么在右子树下找到最小节点。

下面的描述过程采用的是右子树的最小值节点代替

当找到替换节点之后,现在需要考虑的情况就减少了,只可能会出现以下几种情况(因为需要满足红黑树特性):

无子节点,节点为红色
无子节点,节点为黑色
只有右子节点,右子节点为红色,节点本身为黑色

上面这三种情况,说的是新待删除节点。新待删除节点,就是即将被替换到待删除位置的节点。

因为 D 节点就是即将要替换到待删节点位置的节点,它同时又是右子树的最小值,既然是最小值了,它就不再可能拥有左子树了,所以只有可能有右子节点。另外,假如它有右节点且右节点的颜色是黑色,它自身颜色是红色,根本不成立。因为假如它自身为红色且又有黑孩子,那它必须要有两个黑孩子才满足红黑树性质,所以不满足。 那有没有可能,它自身是黑色且右孩子也为黑色呢?也不可能!因为它左孩子已经为空了,说明它从自身出发到左子树的叶子的距离就是1,假如它右孩子也为黑色,那它从自身出发到右子树叶子的距离肯定大于等于2了,明显不可能。

所以总的来说只可能有下面三种情况:

情况1:只需要直接删除节点就可以。删了一个红色新待删节点,不会影响红黑树性质。
情况2:删除该 D 节点后,违反了红黑树特性5,需要调整(不考虑待删除节点为根节点的情况)
情况3:用右子节点 R 占据待删除节点 D,再将其染成黑色即可,不违反红黑树特性。因为左边本来就是空了,其实右子树下即使有多少个黑色节点,也不会影响整体特性。

在这三种情况中,情况1和情况3比较简单,不需要多余的调整。情况2则需要后续的调整步骤使其满足红黑树特性。

3.2 调整红黑树

上述情况2的调整比较复杂。下面对各种情况进行讲解。

根据红黑树的特性5,待删除节点必然有兄弟节点。

为什么这么说呢?因为我们已经假设上面的 D 节点不为根了,那说明它肯定有父亲。首先它是没有孩子的,它下面直接就是叶子了,既然有父亲,不论它是父亲的左孩子或者右孩子,从父亲出发到它自身,黑色节点的个数为1。反证法:假如父亲只有它一个孩子,那说明父亲到另一边子树的叶子距离就为0,因为0个节点。这明显不符合,所以说明父亲肯定有两个孩子,那从而得知待删节点D必有兄弟。

下面根据其兄弟节点所在分支的不同,来分情况讨论。

以下是以关注待删节点为父节点的左子节点进行描述,如果遇到关注节点为父节点的右子节点的情况,则镜像处理。

思路:下面的任何调整只有一个目的,就是不断调整,直到调整到可以直接将 D 移除又不会影响红黑树特性的情况。但关键是调整过程中红黑树特性也不会发生改变。

图例:D 表示当前节点,P 表示父节点,B 表示兄弟节点,BR 表示兄弟节点的右子节点,BL 表示兄弟节点的左子节点


(1)兄弟节点为红色

将父节点染成红色,兄弟节点染成黑色,然后对父节点进行左旋操作。此时就转换为了下面的(4),之后按照(4)继续进行调整。

分析:这种情况,树的整体高度为2,变色左旋之后,整体高度还是保持在2。

(2)兄弟节点为黑色,远侄节点为红色

这种情况下,不需要考虑父节点的颜色。

将父节点 P 与兄弟节点 B 的颜色互换 ,这个过程父亲染黑
将兄弟节点的右子节点 BR 染成黑色
对父节点 P 进行左旋操作

可以看到,原本高度就是符合红黑树特性的,左右子树的高度都为1,因为黑色节点只有一个。经过这三步的调整后,直接删除节点 D 后仍然满足红黑树的特性,调整完成,跳出算法循环。

(3)兄弟节点为黑色,远侄节点为黑色,近侄节点为红色

这种情况下,兄弟节点的左节点染成黑色。兄弟节点染红。然后对兄弟节点做右旋。此时的状况就和(2)一样了。之后就通过(2)的调整方式进行调整。

(4)父节点为红色,兄弟节点为黑色,兄弟节点无子节点

这种情况下,将父节点P染成黑色,再将兄弟节点染成红色。经过这样的操作后,除去节点D后,以P为根节点的子树的黑节点深度并没有发生变化。调整完成。

怎么理解这个操作?

可以看左边,没调整前,P 的左右子树的黑色结点的数目都是1,是相同的,符合红黑树的性质:从任一节点到其叶子的所有简单路径都包含相同数目的黑色节点。然后再看右边,调整后,删掉 D 之后,P 结点的左右子树的黑色结点都是0个,仍然满足性质,所以调整完成。

(5)父节点为黑色,兄弟节点为黑色,兄弟节点无子节点

这种情况下,为了在删除节点 D 后使以 P 为根节点的子树能满足红黑树特性5,将兄弟节点 B 染成红色。但是这样操作后,以 P 为根节点的子树的黑色节点深度变小了。所以需要继续调整。

因为P节点子树的黑色深度发生了减少,可以把其当作待删除节点,那么此时就以 P 节点为关注节点进行进一步调整(继续向上调整)。 这句话的意思我们再以 P 为起始点,继续根据情况进行平衡操作。就是把 P 当成 D,只是不要再删除 P 了。再看是这五种中的哪种情况,再进行对应的调整,这样一直向上,直到新的起始点为根节点或者关注节点不为黑色。

第五种情况,不会一直连续回溯的。假如能一直回溯,指针向上走之后,兄弟节点会一直都没有右孩子吗?不存在的。假如有这种情况,说明树的路径长度已经严重往左倾斜,肯定不可能。所以回溯这个情况只会回溯一次,不会连续回溯。第五个这种情况出现之后,下一次进入算法循环,肯定就是进入其他情况,直到遇到 break,跳出循环,终止整个算法过程。

3.3 检查根节点及删除节点

经过上述的调整后,此时基本满足了红黑树的特性。但是存在根节点变成红色的情况。所以需要将根节点染成黑色的操作。 最后,执行删除操作,将待删除节点删掉。

当然从编程的角度,你也可以调整指针先把待删除节点移掉,然后再开始平衡调整过程。注意这里说的平衡调整,并不是 AVL 树的绝对平衡调整,而是满足红黑树特性的平衡调整。红黑树的平衡和 AVL 的平衡是有区别的。

Java实现

红黑树的删除操作是整个红黑树中最复杂的一部分,理解了这部分,红黑树就算基本拿下了。理解完一种数据结构,要能 get 到作者当初设计时的点,才算是一次积累。红黑树的删除操作,它非常地巧妙,整一个算法循环过程,它不会超过三次,调整过程基本都在子树内完成,指针不需要一直向上回溯,相比 AVL 树,AVL 树在删除节点时,指针有可能会一直回溯到根为止。

原文地址:http://blog.51cto.com/13952975/2346219

时间: 2024-11-08 06:15:51

红黑树的理解与Java实现的相关文章

红黑树深入剖析及Java实现

红黑树是平衡二叉查找树的一种.为了深入理解红黑树,我们需要从二叉查找树开始讲起. BST 二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,右节点的值要比父节点的值大.它的高度决定了它的查找效率. 在理想的情况下,二叉查找树增删查改的时间复杂度为O(logN)(其中N为节点数),最坏的情况下为O(N).当它的高度为logN+1时,我们就说二叉查找树是平衡的. BST的查找操作 T key = a search key Node root

红黑树的理解与学习+伪代码

在看HashMap源码的时候,涉及到红黑树,这个数据结构早已听闻大名,而且在学校的教材中没有讲这个数据结构,所以花了点时间去学习和理解这个数据结构.(比我想象中的复杂的多--) Red-Black Tree的简介 首先这是个二叉查找树,它属于但又不严格属于平衡二叉树(AVL),因为它没有像平衡二叉树一样,严格规定平衡因子的绝对值要小于等于1,而是靠他的颜色规定来达到高性能. 一棵拥有n个元素的RB树,树的高度最多为2log(n + 1),所以操作的时间复杂度是O(logN)级别的.--所以它其实

对B+树,B树,红黑树的理解

出处:https://www.jianshu.com/p/86a1fd2d7406 写在前面,好像不同的教材对b树,b-树的定义不一样.我就不纠结这个到底是叫b-树还是b-树了. 如图所示,区别有以下两点: B+树中只有叶子节点会带有指向记录的指针,而B树则所有节点都带有,在内部节点出现的索引项不会再出现在叶子节点中. B+树中所有叶子节点都是通过指针连接在一起,而B树不会. B+树的优点: 非叶子节点不会带上指向记录的指针,这样,一个块中可以容纳更多的索引项,一是可以降低树的高度.二是一个内部

基于红黑树的骨架提取Java

前面有提到基于Mat变换的骨架提取,然而在实际的应用中处理稍微大点的图片的时候耗时较长就是个问题了,于是针对这个问题寻找了另外一种方法--基于红黑树的骨架提取,这种方法明显处理速度要快一些. 基于红黑树的骨架提取的思路如下: 1,对输入的二值图像进行延拓(直白的说就是在图像的外边界加一圈白点),得到二值图像P: 2,针对骨架提取有8种结构类型(S0~S7)的待删除点.骨架提取的过程实际上就是不断的找符合这8种结构的待删除点,删除待删除点.初始化8个空的红黑树结构T0~T7,初始化current=

红黑树的一个java实现

前几天闲来无事实现了一个红黑树,虽然感觉理解透了,但是真正写码的时候还是调了一个上午才调通,理论还是得联系实践才行啊. 另外可以看看234树,算是红黑树的一个变种,可以加深对红黑树的理解 红黑树性质 1)每个结点要么是红的,要么是黑的. 2)根结点是黑的. 3)每个叶结点,即空结点(NIL)是黑的. 4)如果一个结点是红的,那么它的俩个儿子都是黑的. 5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点. 树的旋转 简单说就是把节点的一个子节点提上来当做主节点,原节点作为子节点

通过2-3-4树理解红黑树

前言 红黑树是数据结构中比较复杂的一种,最近与它交集颇多,于是花了一周的空闲时间跟它死磕,终于弄明白并实现了红黑树.写文总结一下,希望能给试图理解红黑树的同学一些灵感,也让我能记得更深刻. 在研究红黑树时吃了不少苦头,原因有二: 红黑树的插入和删除非常复杂,很多人并没有理解或完全实现,或实现了的没有任何注释,让人很难参考: 网络上红黑树的理解方式较为单一,一般是 双黑.caseN 法,而插入和删除的情况很多,每种都有对应的处理方式,如果死记硬背的话,再过一段时间再回忆各种情况可能就一头雾水了.

30张图带你彻底理解红黑树

本文转自安卓大叔 写在前面 当在10亿数据中只需要进行10几次比较就能查找到目标时,不禁感叹编程之魅力!人类之伟大呀! —— 学红黑树有感. 终于,在学习了几天的红黑树相关的知识后,我想把我所学所想和所感分享给大家.红黑树是一种比较难的数据结构,要完全搞懂非常耗时耗力,红黑树怎么自平衡?什么时候需要左旋或右旋?插入和删除破坏了树的平衡后怎么处理?等等一连串的问题在学习前困扰着我.如果你在学习过程中也会存在我的疑问,那么本文对你会有帮助,本文帮助你全面.彻底地理解红黑树! 本文将通过图文的方式讲解

通过2-3树理解红黑树

一.简介 前面的文章我们循序渐进的讲解了<二叉树><二分搜索树><AVL-平衡二叉树>,从左至右互为基础.尤其是二分搜索树给了我们如何将数据组织成为搜索树的思想,当然二分搜索树存在的天然问题--在极端情况下回退化为链表.所以引出了AVL-平衡二叉树,通过再平衡即LL,LR,RR,RL四个旋转操作维护了一棵平衡的二分搜索树.本章节我们继续梳理一个高阶的树结构即:红黑树.想必大家都知道,红黑树如何维持平衡,如何进行颜色反转让人很难理解,虽然很多博文很多书对红黑树都有讲解,但

Java集合详解6:这次,从头到尾带你解读Java中的红黑树

<Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下Star.fork哈 文章首发于我的个人博客: www.how2playlife.com 什么是红黑树 首先,什么是红黑树呢? 红黑树是一种"平衡的"二叉查找树,它是一种经典高效的算法,能够保证