P4843 清理雪道(上下界网络流)

P4843 清理雪道

上下界最小流

我们先搞一遍上下界可行流(转)

回忆上下界最大流的写法:在可行流的残量网络$s\ -\ t$上跑最大流,答案为可行流$+$残量网络的最大流

那么上下界最小流的写法呢?

只要在残量网络$t\ -\ s$上跑最大流,答案就是可行流$-$残量网络$t\ -\ s$的最大流辣

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define N 1005
#define M 1000005
const int inf=2e9;
int n,S,T,pS,pT,ex[N],d[N],cur[N];
queue <int> h; bool vis[N];
int cnt=1,hd[N],nxt[M],ed[N],poi[M],val[M],fr[M];
inline void adde(int x,int y,int v){
    nxt[ed[x]]=++cnt, hd[x]=hd[x]?hd[x]:cnt,
    ed[x]=cnt, poi[cnt]=y, val[cnt]=v, fr[cnt]=x;
}
inline void link(int x,int y,int v){adde(x,y,v),adde(y,x,0);}
inline void ins(int x,int y,int l,int r){link(x,y,r-l),ex[x]-=l,ex[y]+=l;}
bool bfs(){
    for(int i=1;i<=pT;++i) vis[i]=0,cur[i]=hd[i];
    h.push(S); vis[S]=1;
    while(!h.empty()){
        int x=h.front(); h.pop();
        for(int i=hd[x];i;i=nxt[i]){
            int to=poi[i];
            if(!vis[to]&&val[i]>0)
                d[to]=d[x]+1,vis[to]=1,h.push(to);
        }
    }return vis[T];
}
int dfs(int x,int a){
    if(x==T||a==0) return a;
    int F=0,f;
    for(int &i=cur[x];i;i=nxt[i]){
        int to=poi[i];
        if(d[to]==d[x]+1&&(f=dfs(to,min(a,val[i])))>0)
            a-=f,F+=f,val[i]-=f,val[i^1]+=f;
        if(!a) break;
    }return F;
}
int dinic(){int re=0; while(bfs())re+=dfs(S,inf);return re;}
void del(int x){for(int i=hd[x];i;i=nxt[i])val[i]=val[i^1]=0;}
int main(){
    scanf("%d",&n); int tt,pi;
    S=n+1; T=S+1; pS=T+1; pT=pS+1;
    for(int i=1;i<=n;++i){
        ins(S,i,0,inf);
        ins(i,T,0,inf);
        scanf("%d",&tt);
        while(tt--) scanf("%d",&pi),ins(i,pi,1,inf);
    }
    for(int i=1;i<=T;++i){//调整
        if(ex[i]<0) link(i,pT,-ex[i]);
        if(ex[i]>0) link(pS,i,ex[i]);
    }link(T,S,inf);//T向S连inf,使流量守恒
    int tmps=S,tmpt=T;
    S=pS; T=pT; dinic();
    int Flow=val[cnt]; val[cnt]=val[cnt-1]=0;//可行流的大小即为(T,S,inf)的反向边的流量
    S=tmpt; T=tmps; del(pS); del(pT);//倒着跑最大流
    printf("%d",Flow-dinic());
    return 0;
}

原文地址:https://www.cnblogs.com/kafuuchino/p/10804443.html

时间: 2024-10-07 12:40:13

P4843 清理雪道(上下界网络流)的相关文章

[bzoj2502]清理雪道[上下界网络流]

bzoj状态里有两种,一种时间是个位数,一种是四位数,我就是四位数的那种,,,估计都是看了hzwer.. 1 #include <bits/stdc++.h> 2 3 #define INF 0x3f3f3f3f 4 5 using namespace std; 6 7 template<const int _n,const int _m> 8 struct Edge 9 { 10 struct Edge_base { int to,next,w; }e[_m]; int cnt,

[BZOJ2502]清理雪道 有上下界网络流(最小流)

2502: 清理雪道 Time Limit: 10 Sec  Memory Limit: 128 MB Description 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机,每次飞行可以从总部带一个人降落到滑雪场的某个地点,然后再飞回总部.从降落的地点出发,这个人可以顺着斜坡向下滑行,并清理他所经过的雪道. 由于每次飞行的耗费是固定的,为了最小化耗费

@总结 - 8@ 上下界网络流等一类网络流问题

目录 @0 - 参考资料@ @1 - 问题引入@ @2 - 上下界可行流@ @3 - 上下界最大流/最小流@ @4 - 上下界费用流@ @5 - 带负环的最小费用流@ @6 - 例题与参考代码实现@ @7 - 一些类似的杂题@ @0 - 参考资料@ menci 的博客 liu_runda 的博客 @1 - 问题引入@ 我们知道,通常情况下,一个合法的流应该具有如下几个性质: (1)(除源点汇点以外)流量守恒:\(\sum f(i, u) = \sum f(u, j)\). (2)斜对称性:\(f

有上下界的网络流2-有源汇带上下界网络流ZOJ3229

ZOJ3229题目大意:一个屌丝给m个女神拍照,计划拍照n天,每一天屌丝可以和C个女神拍照,每天拍照数不能超过D张,而且给每个女神i拍照有数量限制[Li,Ri],对于每个女神n天的拍照总和不能少于Gi,如果有解求屌丝最多能拍多少张照,并求每天给对应女神拍多少张照:否则输出-1. 解题思路:        1.增设一源点st,汇点sd,st到第i天连一条上界为Di下界为0的边,每个女神到汇点连一条下界为Gi上界为正无穷的边,对于每一天,当天到第i个女孩连一条[Li,Ri]的边.        2.

【有上下界网络流】【ZOJ】2314 Reactor Cooling

[算法]有上下界网络流-无源汇(循环流) [题解] 无源汇网络流相当于重建图后跑最大流. 循环流要求每个点(或边)的流入量和流出量相等. http://www.cnblogs.com/liu-runda/p/6262832.html http://hzwer.com/3356.html 入度>出度时(in[x]>0)时,需要流出去,所以从源向点引一条边,引诱它流出去. 入度<出度时(in[x]<0)时,需要流进来,所以从点向汇引一条边,引诱它流进来. 为何这样正确?源和汇的作用只是

acdream 1211 Reactor Cooling 【上下界网络流 + 输出流量】

题目:acdream 1211 Reactor Cooling 分类:无源无汇的有上下界网络流. 题意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质. 并且满足每根pipe一定的流量限制,范围为[Li,Ri].即要满足每时刻流进来的不能超过Ri(最大流问题),同时最小不能低于Li. 例如: 46(4个点,6个pipe) 12 1 3 (1->2上界为3,下界为1) 23 1 3

上下界网络流总结

1.无源汇上下界可行流 对于(u,v)有向边,上界为a,下界为b 构图方法为: (1) ss 到 v 容量为 b (2) u 到 tt 容量为 b (3) u 到 v 容量为 a-b 求ss-tt最大流,当且仅当 maxflow=sigma(i,t)=sigma(s,i) 时 存在可行流 2.有源汇上下界最小流 如果发现原图无源汇,要先转化为有源汇 其他点如1方法,建图,另加 t-s 容量为 inf 求一遍 ss-tt最大流,此时s-t的流量为 t-s这条边的反向边的流量,记为 x 在残量网络中

ZOJ 2314 Reactor Cooling 无源汇有上下界网络流

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:给出N个点,M条边的有向图,每条边的有上下界规定,问是否存在一个可行流满足条件,如果满足输出YES并输出每条边的流量. 如果不满足输出NO. 根据周源的<一种简易的方法求解流量有上下界的网络中网络流问题> 无源汇上下界网络流的做法是: 设边u->v的下界是B(u,v),上界是C(u,v). 设M(i)为对于i结点的流入i的下界总和-流出i的下界总

ZOJ Problem Set - 3229 Shoot the Bullet 【有上下界网络流+流量输出】

题目:ZOJ Problem Set - 3229 Shoot the Bullet 分类:有源有汇有上下界网络流 题意:有 n 天和 m 个girls,然后每天给一部分girls拍照,每个girls 有拍照的下限,即最少要拍这么多张,然后每天有k个女孩拍照,摄影师最多可以拍num张,然后 k 个女该每天拍照数量值有上下限,然后问你有没有满足这样条件的给女孩拍照的最大方案,然后按照输入输出每天给女孩拍照的张数. 做这道题目推荐先做:这儿 分析:首先它让你判断能不能满足条件. 按照题目给出的条件很