原题传送门
这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法。我的是暴力,\(O(\frac{a b n}{4})\),足够通过
考虑设\(f(i)\)表示序列中至少有\(i\)组人讨论cxk的方案数
这样就珂以进行容斥,易知答案ans为:
\[ans=\sum_{i=0}^{Min(n/4,a,b,c,d)} (-1)^i f(i)\]
我们考虑如何计算\(f(i)\)
如果视讨论cxk的组为一个元素,则一共有\(n-3*i\)个元素
我们把问题转换成一个多重排列的方案数
多重排列的方案数求法:
现在有\(m\)个不同的元素,每个\(i\)元素有\(a_i\)个,那么方案数为
\[(\sum_{i=1}^m a_i)! \times \prod_{i=1}^m \frac{1}{a_i!}\]
那么我们只要暴力计算即可
#include <bits/stdc++.h>
#define ll long long
#define N 2005
#define mod 998244353
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Min(register int a,register int b)
{
return a<b?a:b;
}
int n,a,b,c,d,lim;
ll fac[N],inv[N],f[N],res,ans;
int main()
{
n=read(),a=read(),b=read(),c=read(),d=read();
fac[0]=fac[1]=inv[0]=inv[1]=1;
for(register int i=2;i<=n;++i)
fac[i]=fac[i-1]*i%mod;
for(register int i=2;i<=n;++i)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for(register int i=2;i<=n;++i)
inv[i]=inv[i]*inv[i-1]%mod;
lim=Min(n>>2,Min(Min(a,b),Min(c,d)));
for(register int x=0,v;x<=lim;++x)
{
v=(x&1)?-1:1;
for(register int i=0;i<=n;++i)
f[i]=0;
for(register int i=0;i<=a-x;++i)
for(register int j=0;j<=Min(n-4*x-i,b-x);++j)
f[i+j]=(f[i+j]+inv[i]*inv[j])%mod;
res=0;
for(register int i=0;i<=c-x;++i)
for(register int j=0;j<=Min(n-4*x-i,d-x);++j)
res=(res+inv[i]*inv[j]%mod*f[n-4*x-i-j])%mod;
res=res*fac[n-3*x]%mod*inv[x]%mod;
ans=(ans+v*res)%mod;
}
write(ans<0?ans+mod:ans);
return 0;
}
原文地址:https://www.cnblogs.com/yzhang-rp-inf/p/10922551.html
时间: 2024-11-09 06:51:52