独热码

名词解释 独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制。通常,在通信网络协议栈中,使用八位或者十六位状态的独热码,且系统占用其中一个状态码,余下的可以供用户使用。举例 例如,有6个状态的独热码状态编码为:000001,000010,000100,001000,010000,100000。 再如,有十六个状态的独热码状态编码应该是:0000000000000001,0000000000000010

来源:http://baike.baidu.com/view/3590998.htm#71-hi-1-79459-55efc26b7dc8814dd413e54791f596e8

时间: 2024-10-18 15:38:27

独热码的相关文章

one-hot code(独热码)

独热码( one-hot code ), 解释为:有多少个状态就有多少比特.而且只有一个比特为1,其他全为0的一种码制(why?). 8个状态的独热码状态编码为:00000001,00000010,00000100,00001000,00010000,00100000,01000000,10000000. 用16进制表示为:0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80. 在Zigbee通信网络协议栈中,使用十六位状态的独热码,且系统占用其中一个状态码(0X800

one_hot(独热码)官方示例的个人理解

官方给的例子 from sklearn import preprocessing enc = preprocessing.OneHotEncoder() enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) enc.transform([[0, 1, 3]]).toarray() >>> array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]]) 这里给出了四组原始的特征表达方式 [0, 0, 3],

OneHotEncoder独热编码和 LabelEncoder标签编码

学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别. 首先了解机器学习中的特征类别:连续型特征和离散型特征 拿到获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用.所以,必须进行特征的归一化,每个特征都单独进行归一化. 对于连续性特征:

机器学习中 为何要使用 独热编码 one-hot

背景 接触tensorflow时,学习到mnist,发现处理数据的时候采取one-hot编码,想起以前搞FPGA状态机遇到过格雷码与独热码. 解析: 将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理. 比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值. 不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3).两个工作之间的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_

独热编码在数据处理中的作用

独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效. 例如对六个状态进行编码: 自然顺序码为 000,001,010,011,100,101 独热编码则是 000001,000010,000100,001000,010000,100000 原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器

机器学习实战:数据预处理之独热编码(One-Hot Encoding)

问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet

【转】数据预处理之独热编码(One-Hot Encoding)

原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "

数据预处理:独热编码(One-Hot Encoding)

http://blog.csdn.net/pipisorry/article/details/61193868 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Ch

独热编码OneHotEncoder简介

在分类和聚类运算中我们经常计算两个个体之间的距离,对于连续的数字(Numric)这一点不成问题,但是对于名词性(Norminal)的类别,计算距离很难.即使将类别与数字对应,例如{'A','B','C'}与[0,1,2]对应,我们也不能认为A与B,B与C距离为1,而A与C距离为2.独热编码正是为了处理这种距离的度量,该方法认为每个类别之间的距离是一样的.该方法将类别与向量对应,例如{'A','B','C'}分别与[1,0,0],[0,1,0],[0,0,1]对应,注意现在各个类别之间的欧式距离是